
Article

Functional attractors in microbial community
assembly

Graphical abstract

Highlights
d We study convergence and divergence in microbiome

assembly in replicate habitats

d Functional convergence reflects an emergent metabolic self-

organization

d Taxonomic divergence arises from multistability in

population dynamics

d Simple models can explain observed quantitative patterns in

microbiome assembly

Authors

Sylvie Estrela, Jean C.C. Vila,

Nanxi Lu, ..., Joshua E. Goldford,

Alicia Sanchez-Gorostiaga,
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SUMMARY

For microbiome biology to become amore predictive science, wemust identify which descriptive features of
microbial communities are reproducible and predictable, which are not, and why. We address this question
by experimentally studying parallelism and convergence in microbial community assembly in replicate
glucose-limited habitats. Here, we show that the previously observed family-level convergence in these
habitats reflects a reproducible metabolic organization, where the ratio of the dominant metabolic groups
can be explained from a simple resource-partitioning model. In turn, taxonomic divergence among replicate
communities arises from multistability in population dynamics. Multistability can also lead to alternative
functional states in closed ecosystems but not in metacommunities. Our findings empirically illustrate how
the evolutionary conservation of quantitative metabolic traits, multistability, and the inherent stochasticity
of population dynamics, may all conspire to generate the patterns of reproducibility and variability at different
levels of organization that are commonplace in microbial community assembly.

INTRODUCTION

The structure and function of microbial communities result from
a complex interplay between selection, historical contingency,
and chance events, in a manner that remains poorly understood
(Costello et al., 2012). Integrating all of the deterministic and sto-
chastic ecological processes that shape community assembly
into a predictive theoretical framework is a major aspiration in
microbiome biology. To meet this challenge, we must under-
stand how each of these ecological forces influence the structure
and functional attributes of microbial communities.
Several recent studies in a range of natural microbiomes,

including those of systems as diverse as soils (Nelson et al.,
2016), the oceans (Louca et al., 2016a), plants (Burke et al.,
2011; Louca et al., 2016b), and the human gut (Human Micro-
biomeProject Consortium, 2012; Turnbaugh et al., 2009), have re-
ported intriguing generic patterns of convergence and variation at
different levels of ecological organization. When binned by meta-
bolic pathway, the fraction of the community metagenome that is
devoted to different metabolic functions is often quantitatively
reproducible in similar habitats (e.g., the same body part in
different individuals) (Louca et al., 2018). Yet, these studies also
find that the taxonomic composition (particularly at the genus level
or lower) is generally highly variable in these habitats. This has led
to the proposal that environmental selection determines the frac-
tions of the metagenome devoted to certain metabolic functions,
whereas the taxonomic composition is less constrained andmore

sensitive to chance events, environmental heterogeneity, histori-
cal contingency, and other processes (Louca et al., 2016b,
2018). In contrast to these findings, other recent studies have re-
ported that seemingly important metabolic functions, such as the
enzymatic degradation of growth-limiting polymers, may also be
affected by historical contingency (Bittleston et al., 2020).
Reconciling theseobservations andexplaining themwithin asin-

gle theoretical framework ischallenging,due to fundamental limita-
tions that are inherent to natural surveys. Namely, working under
natural conditions makes it difficult to perform well-controlled
manipulative experiments. This limitation makes it difficult to
draw direct mechanistic links between physiological processes
at the cellular level and the patterns of ecological convergence
and variation that are observed at the community level. We cannot
generally explain, for instance, why the specific ratios of different
metabolic pathways are what they are in a given natural environ-
ment, nor how they should change in response to specific pertur-
bations, such as nutrient shifts or antibiotic treatment. Perhaps
one of the biggest challenges is that the selective pressures expe-
riencedbymicrobes inmostnatural habitatsarenotknownexactly,
nor do we have a detailed chronology of the historical events that
may have led to the current state of a community.
Some of these problemswould be resolved if wewere to study

the assembly process in simpler and well-controlled habitats,
where the selective and non-selective forces at play can be iden-
tified and mechanistically and quantitatively modeled (Carlson
et al., 2020; Harcombe et al., 2014; Klitgord and Segrè, 2010;
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Sanchez and Gore, 2013; Zelezniak et al., 2015). To this end, we
have recently investigated the self-assembly of hundreds of sta-
ble enrichment communities in replicate synthetic habitats of
known biochemical composition and assembly history (Goldford
et al., 2018). In these experiments, we found a strong conver-
gence in community composition among replicate habitats at
higher levels of taxonomy (i.e., family or higher), despite the pres-
ence of substantial variability at lower levels (i.e., genus). For
instance, across N!100 replicate glucose-limited habitats,

communities in equilibrium adopted similar ratios of the two
dominant taxonomic families (Enterobacteriaceae and Pseudo-
monadaceae), despite the different starting pools of species
used to colonize each habitat. This is an example of ecological
convergence (Figure 1A). At the same time, parallel community
assembly experiments found that the species-level composition
within each of these families was highly variable, diverging even
across communities that were started from the same inoculum in
identical habitats (Goldford et al., 2018).

Figure 1. Emergent metabolic structure in self-assembled microbial communities
(A) Barplots show the relative abundance of the dominant families (Enterobacteriaceae, Pseudomonadaceae, Aeromonadaceae, and Moraxellaceae) in 92

communities started from 12 leaf or soil inocula (7-8 replicates each) after assembly in minimal media with glucose for 12 growth/dilution cycles (data from

Goldford et al., 2018). Other families are shown in gray.

(B) Isolates belonging to different families were grown in monoculture for 48 h in minimal media supplemented with a single carbon source (CS) (glucose, acetate,

lactate, or succinate) (N = 73, Figure S2). Each dot corresponds to an isolate’s maximum growth rate. Note that **** indicates p% 0.0001, ** indicates p% 0.01,

two-sample t test. We measured the pH and quantified the amount of acetate, lactate, and succinate in the medium at various time points for all isolates. The

dashed lines represent the mean concentrations for isolates of each family.

(C) Communities were thawed and grown in minimal media with glucose for a single incubation time. Samples were taken at 10, 21, and 48 h, and we measured

the R/F ratio and the concentrations of glucose and acetate in the medium. Only one representative community (out of N = 9) is shown. See Figure S6 for other

communities. The R/F ratio represents the mean ± SD of the CFU ratios calculated by bootstrapping (N = 1,000 replicates).

(D) Observed and predicted R/F ratio using a simple resource-partitioningmodel. Themodel assumes that the glucose is consumed by the fermentative specialist

(F), whereas the acetate released as ametabolic by-product is consumed by the respirative specialist (R).Communities 16S: R/F ratio observed experimentally in

the glucose communities described in Figure 1A (median = 0.29, Q1 = 0.17, Q3 = 0.69, N = 92). Empirically calibratedmodel: R/F ratio empirically calculated using

parameters obtained from 47 Enterobacteriaceae isolates and 18 Pseudomonas isolates (STAR Methods; Figure S9) (median = 0.31, Q1 = 0.22, Q3 = 0.43, N =

846). FBA calibrated model: using Flux Balance Analysis, we calculated the biomass obtained from glucose fermentation by Enterobacteriaceae strains (F) and

the biomass obtained from consumption of the F’s metabolic byproduct, acetate, byPseudomonas strains (R). The predicted ratio between R and F biomass was

calculated for 74 Pseudomonas metabolic models and 59 Enterobacteriaceae metabolic models. The simulations predict a median R/F ratio of !0.303 (Q1 =

0.302, Q3 = 0.356, N = 4,366) (Figures S9 and S10). Each dot represents a different Pseudomonas/Enterobacteriaceae pair.
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However, the mechanisms responsible for these patterns of
convergence and divergence at different levels of organization
are unknown. It is tempting to hypothesize that, consistent with
observations in natural habitats, family-level convergence in our
laboratory-assembled communities may also reflect an emergent
metabolic organization to which communities converge despite
the unavoidable effects of chance, historical contingency, or idio-
syncratic species interactions. As for the ecological processes
leading to taxonomic variability at lower levels of taxonomy, we
had originally speculated that alternative states in parallel assem-
bly experiments may be due to sampling different taxa into
different habitats from the same species pool (Goldford et al.,
2018; Marsland et al., 2019). Alternatively, it is also possible that
these represent alternative stable states, driven by multistability
and stochasticity in population dynamics (Schröder et al., 2005).
In this paper, we set out to test these different hypotheses and

to provide quantitative explanations for the observed quantita-
tive patterns of convergence and variability at different levels
of organization. To that end, we combine phenotypic assays
and multi-replicated enrichment community experiments in
defined media and link them with ecological and metabolic
modeling. First, our findings indicate that quantitative nutrient
utilization traits (i.e., growth rates and amount of nutrients
secreted) are more deeply conserved than would be expected
based on the shallow conservation of qualitative nutrient utiliza-
tion traits in bacteria (Martiny et al., 2015). Second, we show that
the previously observed convergent ratios of Pseudomonada-
ceae and Enterobacteriaceae in glucose enrichment commu-
nities reflect an emergent metabolic organization of microbial
communities, where the latter specialize in the supplied glucose
and the former in the organic acids released during overflow
metabolism. Furthermore, we show that the ratio between the
abundances of both functional guilds can be quantitatively
explained by a simple resource-partitioning model. Third, we
demonstrate that multistability explains the adoption of different
compositions in replicate habitats and that the alternative com-
munity compositions are driven by the outcome of mutual inhibi-
tion between just two sub-dominant strains. Using dynamical
systems theory, we can predict dynamical information, such as
the location of the tipping points between alternative community
states from the distribution of equilibrium abundances of just
these two strains. Finally, we also show that, although alternative
functional states are also possible when communities are prop-
agated in isolation, these will collapse into a single functional
state when connected through migration. Collectively, our
work demonstrates the promise of using enrichment microbial
community experiments and linking them with dynamical sys-
tems theory and systems biology models to quantitatively
explain properties of experimental microbiomes—a step toward
the aspiration of constructing a predictive theory of microbiome
assembly (Costello et al., 2012; Estrela et al., 2021).

RESULTS

Family-level convergence reflects an emergent
metabolic organization of self-assembled communities
As previewed above, we have recently found that natural bacte-
rial communities that were serially passaged every 48 h in
glucose minimal media self-assembled into stable communities

containing N = 2–17 taxa, which coexist thanks to extensive
cross-feeding interactions (Goldford et al., 2018). Despite their
different starting inocula, these communities adopted highly
reproducible compositions at the family (or higher) level of taxon-
omy, while varying widely in their composition at (or below) the
genus level (Goldford et al., 2018). Communities were dominated
by the Enterobacteriaceae (E), and in all cases the second most
abundant family was the Pseudomonadaceae (P), at a median
ratio of P/E = 0.27 (N = 92, Q1 = 0.15, Q3 = 0.70) (Figure 1A).
The reasons for the strong reproducibility of community assem-
bly at higher levels of taxonomic organization, and for the spe-
cific ratios of these two specific families, remain unknown.
Based on simulations of community assembly using con-
sumer-resource models, we had originally hypothesized that
family-level convergence in our experiments may reflect an
emergent metabolic organization that would map to the phylog-
eny through the conservation of quantitative metabolic traits at
the family level (Goldford et al., 2018). Our mathematical models
had suggested that the dominant family in our communities
would be selected for their faster growth on the supplied
resource, whereas the sub-dominant families would be selected
by their competitive ability in the metabolic secretions (Goldford
et al., 2018).
To evaluate the merits of this theory-motivated hypothesis, we

collected 73 isolates (spanning a total of 11 genera) from17 repre-
sentative communities. Our isolates included members of the
dominant Enterobacteriaceae family (N = 47 isolates) and the
sub-dominant Pseudomonadaceae (N = 20 isolates), as well as
other rarer families, such as Moraxellaceae (N = 3), Aeromonada-
ceae (N = 1), Alcaligenaceae (N = 1), and Comamonadaceae (N =
1) (STAR Methods). On average, our isolates represented 89.4%
of the exact sequence variant (ESV)-level composition of the 17
communities from where they were collected (Figure S1; STAR
Methods). We first measured the growth rates of all isolates in
monoculture in the same M9 glucose minimal media where the
communities had been originally assembled (STAR Methods).
The vast majority of our isolates (72/73) were able to grow on
glucose in monoculture (Figure S2). However, taken as a group,
the Enterobacteriaceae isolates havemuch stronger growth rates
in this medium than the Pseudomonadaceae isolates (mean(E,
glu) = 0.72/h and mean(P, glu) = 0.47/h, p < 0.0001, two-sample
t test, df = 32, N = 67; Figures 1B and S2). The finding that isolates
belonging to the dominant family (Enterobacteriaceae) in our com-
munities have, onaverage, a 60%growthadvantage over the sub-
dominant Pseudomonadaceae isolates is consistent with our
hypothesis.
Although glucose is the only supplied resource, we have previ-

ously found that cross-feeding is rampant in these communities
(Goldford et al., 2018). Because of their competitive disadvantage
in the supplied glucose, we had hypothesized earlier that the
permanence of Pseudomonadaceae in the community may be
associated with stronger growth on the metabolic secretions of
the Enterobacteriaceae. To identify what these byproducts may
be, we used liquid-chromatography mass spectrometry (LC-MS)
to analyze the most abundant secreted byproducts of glucose
metabolism for a representative Enterobacter strain in our com-
munities, as well as for E. coli MG1655 as a reference member
of this family (STAR Methods). These two species also represent
the two main forms of glucose fermentation typically found in
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the Enterobacteriaceae (Vivijs et al., 2015). The three dominant by-
products secreted by both strains into the environment during the
exponential phase were acetate, lactate, and succinate (Fig-
ure S3), consistent with the known patterns of glucose overflow
metabolism in Enterobacteriaceae (Vivijs et al., 2015). Of these,
acetate was the most abundant, at a concentration of 4.7 ±
0.5 mM for E. coli and 6.0 ± 0.2 mM for Enterobacter after 28 h
of growth. To test the generality of these secretion patterns, we
quantified the amount of acetate, succinate, and lactate secreted
by all of our Enterobacteriaceae isolates in glucoseminimal media
(STAR Methods). All three organic acids are strongly secreted by
all the Enterobacteriaceae (at similar levels across isolates, with
some genus-level variation Figure S4) but, as expected, to a
much lesser extent by the Pseudomonadaceae (Figure 1B).
Acetate, is in all cases, the dominant overflow byproduct
(median = 8.5 mM, Q1 = 7.4 mM, and Q3 = 9.6 mM after 16 h of
growth, N = 47).

If, as hypothesized above, the Pseudomonadaceae persist in
our communities because of their growth advantage on the meta-
bolic byproducts of the dominant Enterobacteriaceae, we should
expect Pseudomonadaceae isolates to have a higher growth
rate in the dominant organic acid (acetate), and possibly also in
theothersaswell. To test thishypothesis,wemeasured thegrowth
rates of all of our isolates in acetate, succinate, and lactateminimal
media, separately (STAR Methods). Compared with the Entero-
bacteriaceae isolates,Pseudomonadaceaedid indeedgrowfaster
in acetate (mean(P, acetate) = 0.31/h versus mean(E, acetate) =
0.19/h, p < 0.01, two-sample t test, df = 31, N = 67), in succinate
(mean(P, succinate) = 0.46/h versus mean(E, succinate) = 0.29/h,
p < 0.01, two-sample t test, df = 27, N = 64), and also in lactate
(mean(P, lactate) = 0.54/h versus mean(E, lactate) = 0.37/h, p <
0.01, two-sample t test, df = 24, N = 67) (Figures 1B, S2, and
S5). Importantly, the vast majority of the isolates in our collection
were also able to grow inall of the secretednutrients (acetate, suc-
cinate, and lactate), regardless of the families they belonged to.
Therefore, the difference in growth traits between families is
quantitative rather than qualitative.

The outcome of these experiments is consistent with the theo-
retical explanation of family-level convergence due to quantita-
tive (as opposed to qualitative) functional similarity, both in terms
of niches created and in the growth response to the available re-
sources. Thus, we propose that the Enterobacteriaceae in our
communities (as well as the closely related Aeromonadaceae,
which exhibits remarkably similar quantitative metabolic traits
to the Enterobacteriaceae Figures 1B and S2) form a respiro-
fermentative functional guild (F), which is selected due to their
faster growth on the supplied glucose. In turn, the Pseudomona-
daceae (together with the Moraxellaceae and Comamonada-
ceae) form a second functional group of respirative (R) bacteria,
which is primarily selected by the organic acids released by the
fermenters.

Because glucose is the only supplied resource at the begin-
ning of each batch incubation, the scenario proposed above
would predict that the fermentative (F) bacteria should initially in-
crease in relative abundance over the respirative (R) group in the
early phases of an incubation. This should lead to an early drop in
the ratio between R/F abundances. By the time glucose is
completely exhausted (which always occurs by 24 h of growth),
the only carbon sources available are organic acids. Therefore,

we should expect R specialists to have a growth advantage in
the second half of the incubation, causing an increase in the
R/F ratio. To test this prediction, we revived 9 stable commu-
nities from Goldford et al. (2018) (STAR Methods) and
inoculated them on minimal glucose media at 30

"
C. We then

measured the R/F ratio at different time points during a 48-h in-
cubation (at 0, 10, 21, and 48 h), also quantifying the concentra-
tions of glucose and acetate at each time. Consistent with our
hypothesis, fermenters have a growth advantage in all commu-
nities (characterized by a drop in the R/F ratio) early on the
incubation period (T = 0–10 h) when glucose is abundant (Figures
1C and S6). In turn, respirators have a growth advantage
(characterized by an increase in the R/F ratio) in the second
part of the incubation period (T = 21–48 h) (Figures 1C and S6),
when glucose is absent but organic acids are abundant.
Consistent with our hypothesis, the initial growth advantage of
the F guild was accompanied by a depletion of glucose, whereas
the later growth advantage of the R guild is concomitant with a
depletion of acetate (Figures 1C and S6).
Although glucose is primarily metabolized by the F specialists

and acetate is primarily metabolized by the R specialists, the
latter do still grow (albeit less than F specialists do) within the first
phase of the incubation where glucose is the only carbon source.
This raises the question of whether R could be selected because
of their growth on glucose rather than their significantly faster
growth on the metabolic byproducts of F. To directly test this
alternative hypothesis, we performed a new experiment where
communities composed of three Enterobacteriaceae and one
Pseudomonas were passaged under conditions that select for
fast growth on glucose. For this, we shortened the incubation
time to 12 h (instead of the usual 48 h), a time that is too short
for a significant accumulation of organic acids and for the com-
munities to reach stationary phase. As shown in Figure S7, under
this scenario Pseudomonas are generally excluded from the
communities and only Enterobacteriaceae are found. This pro-
vides further evidence that the R strains (such as Pseudomonas)
are not selected for their growth on glucose but rather because
of their fast growth on the organic acids secreted by the F strains.
In additional sets of assembly experiments, we have found

that when communities lacked either Enterobacteriaceae or
Pseudomonadaceae, these families were replaced at similar fre-
quencies by members of other families with similar functional
roles. For instance, Enterobacteriaceae can be replaced by
Aeromonadaceae (Figures 1A and S8), another family of known
respiro-fermentative bacteria that grow strongly in glucose (Fig-
ure S2) and produce the same organic acids as Enterobacteri-
aceae (Figure 1B). Likewise, we have observed that Pseudomo-
nadaceae could be replaced by either Moraxellaceae (Figures 1
and S8) or Alcaligenaceae (Figure S8). These Alcaligenaceae do
notmetabolize glucose at all, and they are pure organic acid spe-
cialists. All of these enrichment communities have different fam-
ily compositions but highly similar convergent ratios of organic
acid respirators to glucose fermenters to the one found in Fig-
ure 1A (median R/F = 0.29, Q1 = 0.17, Q3 = 0.69, N = 92). This
further supports the idea that family-level convergence reflects
a convergent functional self-organization, which arises due to
the evolutionary conservation of quantitative metabolic traits,
such as the strength of niche construction and the growth-rate
response to nutrients.
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Figure 2. Multiple alternative states at the metabolic and taxonomic level arise from assembly of replicate communities from a single
inoculum
(A) Schematic of experimental design: starting from a highly diverse soil microbial community, 92 communities were serially passaged in replicate habitats with

glucose as the single carbon source for 18 incubation (growth/dilution) cycles (48 h each).

(B) Taxonomic profile of communities shown at the exact sequence variant (ESV) level (one color per ESV) with corresponding genus and family-level assign-

ments. Only the ESVs with a relative abundance >0.01 are shown. After 18 transfers, we find that replicate communities self-assembled in two major functional

groups, fermenters only (N = 15) or fermenters with respirators (N = 77).Within the fermenter functional group, we can see two alternative taxonomic compositions

depending on whether one or two Klebsiella strains are present (Kp and Kp+Km). Within the respirator functional group, we can clearly identify three alternative

taxonomic groups (Pseudomonas, Alcaligenes, and Alcaligenes + Delftia).

(legend continued on next page)
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A simple metabolic model quantitatively explains the
ratio of both functional groups
However, this does not explain why the observed ratio is R/F =
0.29. To test whether this ratio could be explained from simple
metabolic principles, we develop a minimal two-species
resource-partitioning model (STAR Methods). Briefly, the model
assumes that all supplied glucose is consumed by the F
specialist, whereas the excreted acetate is consumed by the R
specialist. By empirically parameterizing the model with our
collection of F and R isolates, we find amedian predicted R/F ra-
tio of 0.31 (Q1 = 0.22, Q3 = 0.43, N = 846), very close to the
experimentally observed median R/F ratio of 0.29 (Q1 = 0.17,
Q3 = 0.69, N = 92) in our communities (Figure 1D). We explore
the generality of this result using constraint-based metabolic
modeling (flux balance analysis [FBA]; STAR Methods) and
a set of previously published genome-scale models for 74
Pseudomonadaceae (Nogales et al., 2020) and 59 Enterobac-
teriaceae (Orth et al., 2011) strains, which do not represent any
of the isolates in our communities. We find a median R/F ratio
of 0.303 (Q1 = 0.302, Q3 = 0.356, N = 4,366), which is also well
aligned with the experimental R/F ratio of 0.29 in our glucose
communities (Figures 1D, S9, and S10).

Our communities were grown on glucose as the single carbon
source. Is the observed R/F ratio specific to growth on glucose or
is this amore general signature of fast growth on sugars that lead
to the release of organic acids on which organic acid specialists
can grow? By assembling a new set of communities in five other
single carbon sources (three sugars and two organic acids)
under identical conditions as the glucose experiments, we find
that the R/F ratio is quantitatively very similar to the R/F ratio of
the glucose communities in all sugars tested, which include
a hexose (fructose), a pentose (ribose), and a disaccharide
(cellobiose), but increases when non-fermentable carbon sour-
ces (citrate and glutamine) are used (Figure S11). This finding
is consistent with our model, which predicts that because respi-
rators have a growth advantage on non-fermentable carbon
sources relative to fermenters, respirators are favored and fer-
menters disfavored; therefore, the R/F ratio should increase.

Replaying the tape of community assembly a large
number of times revealed multiple alternative
community states at the ESV level
Despite their quantitatively convergent metabolic self-organiza-
tion, communities often exhibited substantial taxonomic varia-
tion at the ESV and genus levels, even when all communities
were started from the same inoculum (Goldford et al., 2018).
Based on consumer-resource simulations, we had originally hy-
pothesized that the observed variability in species-level compo-
sition may be caused by the random sorting of species into
different replicate habitats; that is, some generamay be sampled
only into some but not all of the habitats (Goldford et al., 2018).
An alternative mechanism that may also explain taxonomic
divergence in parallel assembly experiments is the existence of

alternative stable states in population dynamics (Amor et al.,
2020; Case, 1990; Dai et al., 2012; Faust et al., 2015; Fukami,
2015; Schröder et al., 2005; Shaw et al., 2019). Multi-stability is
a common outcome of nonlinear dynamics, and it has been re-
ported in a wide range of biological systems (Axelrod et al.,
2015; Dai et al., 2012; Hirota et al., 2011; Ozbudak et al., 2004;
Rauch et al., 2017; Sorek et al., 2013).
The number of replicates (eight per inoculum) used in the as-

sembly experiment shown in Figure 1A is not high enough to
unambiguously discriminate among these alternative (yet,
compatible) hypotheses. This prompted us to start a new exper-
iment with 92 parallel replicate communities, all seeded from the
same environmental inoculum and propagated in minimal
glucose media as we did before (Figure 2A). After 18 serial dilu-
tion transfers, most communities (77 out of 92) assembled into
the metabolic structure described above, consisting of F and R
specialists at proportions that fall within the range we had
observed before (R/F = 0.46, Q1 = 0.34, Q3 = 0.65) (Figure 2B).
We will leave the remaining 15 communities aside for now and
return back to them in later sections of this paper.
Consistent with previous experiments, our parallel assembly

experiment resulted in communities with alternative taxonomic
compositions.We identified twomain stateswithin the fermenta-
tive functional group and three alternative compositions within
the respirative functional group. These alternative states are
evident when we simply group together all communities that
share the same set of ESVs above a threshold of 0.01 relative
abundance (Figure 2B), and they are also generally consistent
with the outcome of cluster analysis (Figure S12). The two
main taxa in the R group are an ESV of the genus Alcaligenes
(referred to further on as A) and an ESV of the genus Pseudo-
monas (referred to further on as P). Among the fermenters, the
dominant taxa were two ESVs of the genus Klebsiella, hereafter
referred to asKp andKm, respectively (STARMethods). The two,
dominant respirator ESVs,Alcaligenes (A) and Pseudomonas (P),
appear to be key determinants of taxonomic composition. They
were never found together above an abundance of 0.01. In com-
munities where A dominated the R guild, the F guild could
contain either Kp alone, or both Kp and Km together above a
0.01 abundance threshold (R/F = 0.56, Q1 = 0.41, Q3 = 0.66).
By contrast, when P dominates the R guild, the F guild would
only contain one of these Klebsiella strains (Kp) but never the
other, and it alsomay contain an ESV of the genus Enterococcus,
which is, in turn, never found co-occurring with theA strain (R/F =
0.15, Q1 = 0.13, Q3 = 0.17). The composition of the respirator
group is also strongly determined by its dominant taxa: the A
strain may co-occur with a Delftia ESV (in N = 50 communities)
and Achromobacter ESV (in N = 7 communities) and sometimes
both (in N = 6 communities). The P strain, on the other hand, is
never found together with neither Delftia nor Achromobacter.
For simplicity, further on, we will refer to the state where A is
the dominant member of the R guild as KA and to the state where
P is the dominant member of the R guild as KP. However, note

(C) Probability density distribution of the relative abundance of the dominant Alcaligenes (A) and Pseudomonas (P) ESVs at Transfer 18 all started from the same

inoculum (N = 370 communities) (STAR Methods).

(D) Population dynamics ofA andP for a subset of the communities represented in (C) (N = 31), where the background shows the absolute value of the derivative of

the potential (U0[x]) (left plots). The plots on the right of each timeseries show the potential (U[x]) (colored solid line) and the dark gray dashed lines show the local

maximum (indicating the tipping point, x = #1.18 for A and x = #1.97 for P) between the two minima (indicating the stable states; light gray dashed line).
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that these states may themselves contain several taxonomic
alternative states. For instance, the KA statemay not only consist
of A coexisting with Kp but also with Km, Delftia, and/or
Achromobacter.

The population dynamics of two R strains drive the
formation of alternative stable states
What ecological mechanism governs whether a community will
contain Pseudomonas or Alcaligenes as their dominant member
of the R guild? A first hypothesis is random sampling: because
there is no immigration, any community where either the A or
the P strains were, by chance, not sampled into the habitat at
the start of the experiment, will also not have these strains at
the end (Goldford et al., 2018). Contrary to this hypothesis, we
find that the P strain is still present below a relative abundance
of 0.01 in !35% (23/65) of the A dominated communities
(STAR Methods; Figure S13). Likewise, in !67% (8/12) of the P
dominated communities, the A strain is also present below
0.01 relative abundance (STARMethods; Figure S13). This result
suggests that the alternative states we observed are in general
not caused by randomly failing to inoculate either A or P in
some of our habitats, nor is it caused by the stochastic extinction
of established taxa during serial passaging.
The fact that both A and Pmay exist in either a low- or a high-

abundance state in our replicate habitats suggests the possible
existence of alternative stable states. For an initial exploration of
this possibility we applied quasi-potential analysis (Hirota et al.,
2011; Livina et al., 2010), an ecological method that has been
recently applied to detect alternative states in the gut micro-
biome (Lahti et al., 2014). Quasi-potential analysis connects
the probability density of a stochastic variable x (Q[x]) with the
dynamical potential on which it moves (U[x]) through the
Fokker-Planck equation (STAR Methods). This analysis allows
us to derive the stable and unstable dynamical equilibria of the
variable x, and we use it to separately estimate the potentials
for A and P from their respective probability densities (N = 370
parallel communities) at transfer 18 (Figure 2C; STAR Methods).
For both strains, we detect a metastable state at low

abundance and a stable equilibrium state at high abundance
(indicated by the two local minima of the potentials, dark gray
dashed lines), separated by a threshold (local maximum, light
gray dashed line) (Figure 2D). To test whether the alternative
equilibria and their switching thresholds are predictive of the
assembly dynamics in our self-assembled communities, we
sequenced the full temporal dynamics for a representative sub-
set of 31 communities (Figure 2D). The predicted stable equilibria
and thresholds for both strains are consistent with the observed
population dynamics for each strain: when A or P jump over their
predicted threshold they generally converge to the predicted
high-abundance state, remaining there without switching back
to the low-abundance state (Figure 2D).
These results are consistent with the existence of alternative

stable states, but they fail to explain why we never see A and P
together at high abundance. We hypothesize that this may be
due to A and P mutually inhibiting one another when they are
both at high abundance, so that once either of them reaches
the high-abundance equilibrium, it prevents the other from
switching to its own. This hypothesis would imply that, if we
were to reconstitute communities with different initial abun-

dances of A and P, we should find that neither of them may
invade when rare if the other is at (or near) its high-abundance
equilibrium.
To test this hypothesis, we isolated the dominant strains (Kp,

P, and A) and inoculated multiple populations of Klebsiella (Kp)
with varying initial densities of A and P in minimal glucose media
(Figure 3A). By starting multiple communities with regularly
spaced densities of both species, and then allowing them to
find their dynamical equilibria, we are also mapping out the
basins of attraction of the stable equilibria in a two-dimensional
phase portrait formed by A and P abundances (Chen et al., 2014;
Sanchez and Gore, 2013) (Figure 3B; STAR Methods). To that
effect, we passaged all these reconstituted communities for
12 growth-dilution cycles and measured their abundances
at three different time points (Figure 3A) (STAR Methods).
Consistent with the expectation of multistable population dy-
namics, we find that P and A both stably coexist with Kp, but
generally not with one another regardless of their initial densities
(Figures 3B, 3C, and S14). Importantly, and as expected from the
multistability hypothesis, whether P or A is found in equilibrium
depends on the initial state of the population in the phase
portrait. In the upper-left side, where P starts at low and A at
high abundance, communities converge to a state dominated
byA (basin of attraction forA). In the lower-right part of the phase
portrait, where the opposite is true, communities converge to a
state dominated by P (basin of attraction for P) (Figure 3B).
Although we kept the initial density of Kp constant across all
treatments here, because Kp specializes primarily in the sup-
plied glucose, it should equilibrate fast and therefore we expect
the outcome to not be too affected by its initial abundance.
The outcome of the bottom-up invasion experiment in Fig-

ure 3B gives us the set of initial conditions of the basin of attrac-
tions for A and for P, which allows us to map the A-P phase
portrait shown in Figures 4B and 4C. One may be skeptical of
whether the basins of attraction inferred with this simple 3-mem-
ber community will also describe our self-assembled commu-
nities, where many additional species are also present. To
address this question, we projected the full temporal dynamics
of the self-assembled communities (shown in Figure 4A) as tra-
jectories over the A-P phase portrait mapped earlier (Figure 4C).
The stable compositions of the self-assembled communities af-
ter 18 transfers fall within or very close to the basins of attraction
inferred from the reconstituted, 3-species consortia (Figure 4).
Communities start in a state where both P and A are low, and
as time goes on, they fall into one of the two attractors and never
switch back (Figure 4). Importantly for what follows, communities
could also get trapped in the transition region where the separa-
trix between both basins of attraction is predicted to be, resulting
in final states (after T = 18 transfers) where neither A nor P have
yet reached their high-abundance state.

Migration between communities funnels communities
to functional convergence
Indeed, as already advanced in previous sections, a non-negli-
gible fraction of the communities in Figure 2B (15/92) adopted
an alternative functional state characterized by a low abundance
of the respirative guild (R/F = 0.002, Q1 = 0.0014, Q3 = 0.0042).
However, the results discussed above and shown in Figures 2, 3,
and 4 suggest that these communities might be trapped in either
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a slow-dynamics transition region (near the separatrix) or in a
metastable state. Previous theoretical and experimental work
has shown that migration between communities can homoge-
nize community composition, disfavoring metastable equilibria
(Chase, 2003; Fodelianakis et al., 2019; Leibold et al., 2004;

Stegen et al., 2013). Based on this premise, we hypothesized
that opening the system by connecting communities through
migration may destabilize this alternative functional state,
pushing all communities toward the states with ‘‘typical’’ repre-
sentation of both guilds.

A

B

C

Figure 3. Multistable coexistence between two organic acid specialists explains the alternative attractors in community composition
(A) We isolated the three dominant strains—Klebsiella (Kp),Alcaligenes (A), andPseudomonas (P) thatmake up the twomajor alternative attractors and grew them

in a pairwise coculture (Kp+A or Kp+P) or in a three-member consortia (Kp+A+P) by mixing Kp with different initial densities of A and/or P (see STAR Methods).

These reconstituted communities were grown in the same conditions as the top-down assembly communities for 12 transfers (STAR Methods).

(B) Phase portrait showing the state of the community after T = 3, 8, and 12 transfers for 2 biological replicates. A square is colored yellow if a community that was

started there contained A but not P at time T, and it is purple if it contained P but not A. It is gray if both A and P were present in both replicates. Squares with a

seamless pattern show states where the two replicates exhibit different outcomes. We can see that the phase portrait is divided in two regions: the upper-left

diagonal is made up by the basin of attraction of A dominated communities, whereas the bottom-right diagonal contains the basin of attraction for P dominated

communities. A and P generally mutually exclude each other depending on their starting densities. See Figure S14 for the phase portraits of the two biological

replicate experiments separately.

(C) Temporal dynamics of the relative abundance of each taxa for a subset of the communities shown in (B) (the 2 replicates are shown separately). See Figure S14

for the time series of all pairwise initial conditions of the phase portrait.
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To test this hypothesis, we repeated our parallel community
assembly experiments using the same initial inoculum in N =
93 identical habitats, but this timewe also imposedmigration be-

tween communities for twelve growth cycles (Figure 5A). We
then allowed the communities to stabilize without migration for
six additional transfers (Figure 5A). This experimental setup is

A

B C

Figure 4. Multistable metabolic attractors between two organic acid specialists
(A) Temporal dynamics for a subset of the replicate communities shown in Figure 2B (N = 19). Replicate communities were all started from the same inoculum and

serially transferred to fresh minimal media with glucose every 48 h for a total of 18 growth-dilution cycles. Only the top four dominant ESVs (Kp, Km, P, and A) at

transfer 18 are colored, other ESVs are shown in gray.

(B and C) Phase diagram showing the basins of attraction for Alcaligenes (A) dominated (yellow area) and for Pseudomonas (P) dominated (purple area) states,

inferred from the outcome of the bottom-up invasion experiment in Figure 3B (STARMethods), separated by a transition region (white area). The gray dashed line

indicates the separatrix between the two basins of attraction. In (B), the dots show the relative abundance of A and P at Transfer 18 (N = 92) for the communities

shown in Figure 2B. The gray shaded areas indicate the regions of low A and low P that are below the detection level of amplicon sequencing. In (C), overlaid are

the trajectories of the relative abundance of A and P for all N = 19 communities shown in panel (A). The arrows become darker with time (i.e., from T1 to T18). At T0

(original inoculum), Pwas found at a relative abundance of 0.0086, whereas Awas undetectable. We highlight four typical outcomes: the community explores the

landscape and remains in themetastable state of lowR/F (i), the community switches abruptly to theA dominated state (ii), the community explores the landscape

and switches to the A dominated state (iii), and the community explores the landscape and switches to the P dominated state (iv).
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A

B

C

Figure 5. Opening the system through migration leads to functional convergence
(A) Replicate communities all started from the same inoculum (and the same inoculum as in Figure 2) were assembled in an open system with global migration

(N = 93)—that is, in addition to the normal transfer, each community received a small amount of migrants from a common migrant pool or with migration from the

regional pool (i.e., inoculum) (N = 92) (STAR Methods). Communities were assembled under these migration scenarios for twelve growth cycles (T1–T12), after

which migration was stopped, and communities were allowed to stabilize for six additional transfers without migration (T13–T18).

(legend continued on next page)
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similar to metacommunity dynamics with global dispersal (Lei-
bold et al., 2004), and we hereafter refer to this treatment as
‘‘global migration’’ (Kryazhimskiy et al., 2012). Consistent with
our hypothesis, we found that communities perturbed by global
migration converged to a single metabolic attractor with a R/F =
0.40 (Q1 = 0.37, Q3 = 0.46, N = 93) (Figures 5B and 5C). At the
taxonomic level, these communities all converged to the state
most commonly observed in the closed system without migra-
tion, that is, the one dominated by the Enterobacteriaceae and
Alcaligenaceae families (Figure 5B).
To further validate this result, we repeated the same experi-

ment, but this time, imposing migration from the regional pool
for 12 transfers followed by stabilization for 6 transfers. This
‘‘regional migration’’ perturbation pushed all but one of the 93
communities away from the low R/F functional state, switching
to either the Pseudomonas dominated state (n = 88) or the
Alcaligenes dominated state (n = 4). This experiment also sup-
ports the hypothesis that the alternative, low R/F (!0.002) func-
tional state reflects either communities existing in a metastable
state, or communities stuck near the separatrix. Given enough
time, or sufficient perturbations, these low R/F communities
will eventually collapse into a metabolic state with an R/F ratio
that is comparable with those we had observed before and
whose R/F ratios are also consistent with the predictions from
our resource-partitioning model (Figure S15).

DISCUSSION

At the onset of this paper, we set out to address three questions
that will help us understand the previously reported patterns of
convergenceandparallelismobserved inmulti-replicatedmicrobi-
al community assembly experiments. Does convergent family-
level structure observed in these experiments reflect a convergent
metabolic self-organization of our communities? If that is the case,
can we quantitatively and mechanistically explain the ratios of
different metabolic groups? What ecological processes may be
responsible for the observed divergence at lower levels of taxon-
omy in parallel assembly experiments? Through a combination
of experiments and mathematical models, we present strong evi-
dence that the previously reported family-level convergence in
minimal glucose-limited habitats reflects an emergent metabolic
self-organization to which these communities converge. Bacteria
belonging to the dominant family, mainly Enterobacteriaceae,
are selected for their fast growth on the supplied glucose, and
they all secrete similar amounts of organic acids as metabolic
by-products (glucose fermenters, F). In turn, bacteria belonging
to the sub-dominant family, mainly Pseudomonadaceae, are
selected for their faster growth on the organic acids (respirative
strategists, R).
To study the ecological mechanisms behind the observed

divergence in species-level composition, we have replayed the
proverbial tape of community assembly hundreds of times under
different migration treatments. Our experiments indicate that

both (1) alternative taxonomic compositions of the same func-
tional guilds and (2) alternative functional states may arise from
multi-stable population dynamics and that this multistability
may be driven by interactions between just two key strains.
These results indicate that the combination of multistability and
stochasticity can generate historical contingency and lead to
different taxonomic and functional structures in closed microbial
communities assembled in parallel. This provides a potential
explanation for a similar observation of alternative functional
states in aquatic microcosms under serial passaging (Bittleston
et al., 2020). We speculate that, similar to what we have found
in our experiments, migration between these microcosms
might eliminate this functional variation and lead instead to
convergence.
Other studies that have reported functional variation in repli-

cate habitats were performed under a single batch without
passaging and involved competition for space (Zhou et al.,
2013). Under these conditions, one would intuitively expect his-
torical contingency to play an even larger role. By contrast, our
experiments are done under serial passaging (rather than in a
single batch) under a relatively high dilution factor (1253). This
treatment replenishes nutrients and removes microbes from
the habitat every 48 h, and this allows communities to reach a
state of ‘‘generational’’ equilibrium (Sánchez et al., 2021). Our
experiments were also done under a strong selection regime.
How increasing stochasticity should affect community assembly
at different levels of organization is still an open question, but one
may speculate that the effect of neutral processes would be
stronger as we do so (Aguirre de Cárcer, 2019; D’Andrea et al.,
2020). Finally, although the ratio of respirative to fermentative
bacteria is strongly convergent in our glucose-limited habitats,
we should not necessarily expect all other metabolic functions
to be equally convergent (Bittleston et al., 2020). The strength
of the different selective pressures, the distribution of metabolic
functions in the phylogeny, and other demographic and ecolog-
ical processes, such as the nutrient flow rate through a system or
the turnover rate, could all affect the degree of functional conver-
gence. Putting together all of these and other ecological factors
into a comprehensive theory of microbial community assembly
will represent a major conceptual advance with the potential to
unify disparate observations across different habitats and condi-
tions (Bittleston et al., 2020; Fukami, 2015; Louca et al., 2018).
Future work will be needed to help us understand how selective
pressures constrain the functional assembly of microbial com-
munities, and under which conditions we should expect the joint
effects of chance and historical contingency to make it unpre-
dictable. We hope that the work presented herein will help
motivate new such studies.

STAR+METHODS

Detailed methods are provided in the online version of this paper
and include the following:

(B) Community composition at Transfer 18. ESVs with a relative abundance %0.01 are shown as ‘‘other’’.

(C) R/F ratio of the communities at Transfer 18 for the no migration (Figure 2B), global migration, and regional migration (Figure 5B) treatments. Each dot rep-

resents a community and is colored by its taxonomic community state. The blue dots show communities mainly composed of fermenters, the yellow dots show

communities where Alcaligenes is the dominant respirator, and the purple dots show communities where Pseudomonas is the dominant respirator. The gray

shading area represents the interquartile range of the communities shown in Figure 1A.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alvaro
Sanchez (alvaro.sanchez@yale.edu).

REAGENT OR RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

D-glucose VWR Cat. #0188

Acetate Sigma Cat. #S8625

D-lactate Sigma Cat. #71716

succinate Alfa Aesar Cat. #419A3

Critical commercial assays

glucose GO assay kit Millipore Cat. #GAGO20

Acetate assay kit Abcam Cat. #ab204719

D-Lactate assay kit Abcam Cat. #ab83429

Succinate assay kit Abcam Cat. #ab204718

DNeasy 96 Blood & Tissue kit QIAGEN Cat. #69582

Quan-iT PicoGreen dsDNA Assay kit Invitrogen Cat. #P11496

SequalPrep PCR cleanup and

normalization kit

Invitrogen Cat. #A1051001

Deposited data

16S rRNA sequencing abundance data This study https://doi.org/10.5061/dryad.5x69p8d3z

Genome scale metabolic models This study SRA: PRJNA749600

Raw 16S rRNA amplicon sequences for

communities assembled in glucose under

different migration treatments

This study SRA: PRJNA761777

Raw 16S rRNA amplicon sequences for

communities assembled in alternate

carbon sources

This study SRA: PRJNA761387

Community abundance data Goldford et al., 2018 https://doi.org/10.5281/zenodo.3817698

Software and algorithms

Source data files and code used to

generate the figures.

This study https://github.com/sylestrela/

Estrelaetal2021_FunctionalAttractors

(https://doi.org/10.5281/zenodo.5510318)

Code for the FBA simulations. This study https://github.com/vilacelestin/

Estrelaetal2021_FunctionalAttractors

(https://doi.org/10.5281/zenodo.5510298)

R (version 3.4.3) (R Core Team, 2017) R: A

language and environment for statistical

computing. R Foundation for Statistical

Computing, Vienna, Austria.

https://www.r-project.org/

RRID:SCR_001905

DADA2 (version 1.6.0) Callahan et al., 2016 N/A

COBRApy (version 0.17.1) Ebrahim A, Lerman JA, Palsson BO,

Hyduke DR. COBRApy: COnstraints-Based

Reconstruction and Analysis for Python.

BMC Syst Biol. 2013;7: 74.

RRID:SCR_012096

Mathematica (version 11.0.1.0) Wolfram RRID:SCR_014448
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Materials availability
This study did not generate new materials.

Data and code availability
d The 16S rRNA sequencing abundance data are available at Dryad or Zenodo and are publicly available as of the date of pub-

lication. Accession numbers are listed in the key resources table.
d The raw 16S rRNA amplicon sequences and metadata files have been deposited in the NCBI SRA database under accession

number PRJNA761777 and PRJNA761387 and are publicly available as of the date of publication.
d Thewhole-genome sequence reads for the 5 isolates have been deposited in the NCBI SRA database under accession number

PRJNA749600.
d The source data files and scripts used to generate the figures are available at https://github.com/sylestrela/

Estrelaetal2021_FunctionalAttractors and Zenodo. DOI is listed in the key resources table.
d The code for the FBA simulations are available at https://github.com/vilacelestin/Estrelaetal2021_FunctionalAttractors and

Zenodo. DOI is listed in the key resources table.
d Any additional information required to re-analyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Resource partitioning model
To try to explain the observed R/F ratio to which our serially passaged enrichment communities converge after 12 transfers (Fig-
ure 1A), we develop a resource-partitioning model. Our working hypothesis is that most (though not necessarily all, as elaborated
in the Methods S1; Figure S6) of the glucose is uptaken by the fermentative guild (F), while most (though, again, not all; Figure S6)
of the organic acids they release as overflow byproducts (primarily acetate; Figure 1B) is captured by the respirative specialists
(R). Therefore, we reasoned that the observed median R/F ratio may simply reflect the ratio between (i) the average amount of
biomass that the respirative specialists may extract from the secreted acetate over the incubation period, and (ii) the average
biomass the glucose specialists can extract from the supplied glucose over the incubation period. We illustrate and formalize this
hypothesis in Figure 1D. With minimal additional assumptions, this resource partitioning hypothesis would predict an R/F ratio of

R

F
zDace; glu

wR
ace

wF
glu

; (Equation 1)

where Dace,glu is the average number of acetate molecules secreted per glucose molecule uptaken by the F specialists; wglu
F is the

average biomass yield of F specialists per glucosemolecule over the entire incubation time, andwace
R is the average biomass yield of

R specialists per acetate molecule uptaken over the entire incubation time. As described in the Methods S1, Equation 1 is an
approximation, which includes only the effects of the two most abundant resources, glucose and acetate, while ignoring the other
less abundant resources. In the Methods S1 we derive Equation 1, and explore additional limits where those other resources are
also included.

An advantage of the model in Equation 1 is that it can be tested quantitatively. One could estimate the values of Dace,glu,wglu
F, and

wace
R that are characteristic of F and R bacteria in our communities, bymeasuring them in our collection of isolated taxa. If Equation 1

approximates the underlying ecology with sufficient realism, we should expect that evaluating it with those parameters should
produce a value of the R/F ratio that is similar to that to which our enrichment communities converge. To test this model, we thus
proceeded to estimate the value of Dace,glu for each of our F isolates, by measuring the total amount of acetate released at the
time when glucose had just been exhausted, and dividing it over the amount of supplied glucose (STAR Methods and Methods
S1). We then estimated wglu

F and wace
R for each of our F and R isolates by growing them in monoculture in glucose and acetate

media, respectively (STAR Methods and Methods S1; Figure S9A). In Figure 1D we plot the expected R/F ratio by evaluating
Equation 1 with the parameter values obtained for all pairs of isolates in our collection. This empirically parameterized model gives
us a median predicted R/F ratio of 0.31 (Q1=0.22, Q3=0.43, N=846), very close to the experimental R/F ratio of 0.29 (Q1=0.17,
Q3=0.69, N=92) in our communities (Figure 1D).

To explore the generality of this result beyond the specific set of isolates in our communities, we set out to evaluate Equation 1
using constraint-based metabolic modeling (Flux Balance Analysis [FBA]; STAR Methods) and a set of previously published
genome-scale models for 74 Pseudomonadaceae (Nogales et al., 2020) and 59 Enterobacteriaceae (Orth et al., 2011) strains, which
do not necessarily represent any of the isolates in our communities. Because FBA assumes that microbes grow optimally, this
approach will give us the expected R/F ratio that one should observe if Enterobacteriaceae and Pseudomonadaceae were using
optimal metabolic strategies in glucose and acetate, respectively (STAR Methods). In Figure 1D, we show the result of evaluating
Equation 1 by entering the computed values of Dace,glu, wace

R, and wglu
F for all of the possible R-F pairs one can form from our

set of genome-scale models (Figures S9B, S9C, and S10). The median R/F ratio was 0.303 (Q1=0.302, Q3=0.356, N=4366) which
is also well aligned with the experimentally observed median R/F ratio of 0.29 (Q1=0.17, Q3=0.69, N=92) in our glucose communities
(Figure 1D). Additional variations of this model that exploredmore stringent (but less realistic) limits, i.e. where the additional secreted
byproducts are either all consumed by the R specialists or by the F specialists, or they are evenly split between R and F specialists,
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are discussed in the Methods S1 and Figure S16. All yielded R/F ratios that were within the range of values to which our empirical
communities converged to. We also use FBA to show that oxygen is generally required for growth on acetate, lactate, and succinate
(Methods S1; Figure S17). To confirm the validity of using genome-scalemodels from the literature, we also performedwhole genome
sequencing for 5 strains from our isolate collection (belonging to 5 different genera) (Figure 1B) and built genome-scale metabolic
models of these strains (Methods S1). As shown in Figure S18, repeating our analysis using these models produced results that
are in line with those observed for the library of published models.

Isolates collection
Isolates were collected from several communities previously stabilized in glucose minimal media and stored in 40% glycerol at -80C.
The communities used were C1R2, C1R4, C1R6, C1R7, C2R4, C2R6, C2R8, C4R1, C7R1, C8R2, C8R4, C8R5, C10R2, C11R1,
C11R2, C11R5, C11R6, where CXRY stands for initial environmental sample (inoculum) X replicate community Y (Goldford et al.,
2018). These communities were plated in three different media: Tryptic Soy Agar (TSA) and minimal M9 supplemented with glucose
or citrate at concentration 0.07 moles of carbon per liter. Isolates from these plates were streaked on the corresponding medium
based on visual inspection of colony morphology after 2 and 5 days. Colonies from the streaked plates were streaked twice more
on new plates, then cultured in the corresponding liquid medium (Tryptic Soy Broth (TSB), M9 glucose or M9 citrate) and stored
at -80C with 40% glycerol.

Growth curves and maximum growth rate calculation
Isolates were streaked from glycerol on TSA plates and grown at 30C for 48h. Single colonies of each isolate were used to inoculate
500uL TSB in a deep-well plate. These pre-cultures were incubated at 30C without shaking for 48h. Pre-cultures were then diluted
1:1000 inM9 supplementedwith either glucose (VWR, #0188), acetate (Sigma, #S8625), D-lactate (Sigma, #71716), or succinate (Alfa
Aesar, #419A3) at a final concentration of 0.07 moles of carbon per liter. The final volume for the growth assays was 100uL in 384 well
plates. Each isolate was assayed in two replicates. For computing themaximal exponential growth rate, the log(OD620) of each repli-
cate was first smoothed by fitting a generalized additive model with an adaptive smoother, using the gam function from the mgcv
package in R. This method allows for extraction of estimates of growth rate that are not biased by underlying assumptions when
fitting predetermined models. The maximum of the derivative was taken as the exponential growth rate. We excluded the first 1h
of growth, as well as all of the timepoints in the beginning of the curve that showed an OD<0.01, to avoid artifacts derived from
measurement and fitting noise respectively.

LC-MS of E. coli and Enterobacter supernatant
E. coliMG1655 and an Enterobacter isolate from the glucose communities in (Goldford et al., 2018) were revived from frozen stock by
streaking on LBAgar. Two replicate colonies of each strain were used to inoculate separate 50ml falcon tubeswhich contained 5ml of
LB-Lennox and were incubated at 30C overnight (shaking at 200RPM). After !16h of growth, overnight cultures were brought into
balanced exponential by three serial transfers into fresh LB (1ml of culture in 4ml of fresh media). The first two transfers were per-
formed at 1h intervals whilst after the final transfer the cultures were allowed to grow for 1h and 30 min. Cells were centrifuged,
washed and re-suspended 3 times, using 1.1x M9 media (containing no carbon source). After the final washing step, cells were
normalized to an OD620 of 0.1. 500ul of M9 glucose in a 96 deep well plate was inoculated with 4ul of normalized cells, and grown
at 30C. After 28h of growth, spent media was extracted using 0.2umAcroPrep filter plates. Spent media was submitted for a targeted
metabolomics analysis carried out by the Metabolomics Innovation Center (TMIC), in Alberta, Canada, and described below.
The samples were analysed using a targeted quantitative metabolomics approach. This approach combines a direct injection

mass spectrometry method with a reverse-phase LC-MS/MS custom assay. Together with an ABSciex 4000 QTrap (Applied
Biosystems/MDS Sciex) mass spectrometer, this method allows the targeted identification and quantification of up to 143 different
endogenous metabolites, including sugars, amino acids, biogenic amines & derivatives, acylcarnitines, uremic toxins, glycerophos-
pholipids, and sphingolipids (Foroutan et al., 2019, 2020). This method combines the derivatization and extraction of analytes, and
the selective mass-spectrometric detection using multiple reaction monitoring (MRM) pairs. For metabolite quantification, isotope-
labeled internal standards and other internal standards are used. Mass spectrometric analysis was performed on an AB Sciex 4000
Qtrap! tandem mass spectrometry instrument (Applied Biosystems/MDS Analytical Technologies, Foster City, CA) equipped with
an Agilent 1260 series UHPLC system (Agilent Technologies, Palo Alto, CA). The samples were delivered to the mass spectrometer
by a LC method followed by a direct injection (DI) method. Data analysis was done using Analyst 1.6.2.

48h growth assay of single isolates
Isolates were revived from frozen stock and acclimated to growth on glucose minimal media (500uL) for 48h. 4uL of the grown cul-
tures were then inoculated into 500uL fresh glucose media (4 replicates each) and samples were collected at different timepoints
during the 48h growth cycle (one replicate used per timepoint, i.e. at 0h, 16h, 28h, and 48h). At each timepoint, 100uL of samples
were collected, their OD620wasmeasured, followed by storage at -80Cwith 40%glycerol. The remaining samples were immediately
centrifuged at 3000 rpm for 25min to separate the cells from the supernatant. The supernatant was transferred to a 96 well 0.2mm
AcroPrep filter plate on top of a 96 well NUNC plate fitted with the metal collar adaptor and centrifuged at 3000 rpm for 10 min.
The supernatant was immediately frozen at -80C until processing.
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48h growth assay of communities
Previously stabilized communities in glucose minimal media for 12 serial transfers (Goldford et al., 2018) were revived from frozen
stock and serially transferred for three passages on glucose minimal media, under the same experimental conditions as before.
We selected a subset (N=9) of communities where fermenters and respirators were detected after three serial transfers. At the start
of the fourth passage, 4 replicate 96-well plates were started. Samples were collected at different timepoints during the 48h growth
cycle (one plate used per time point, i.e. at 0h, 10h, 21h and 48h). At each timepoint, 100ul of samples were taken and stored at -80C
with 40% glycerol. The remaining samples were immediately centrifuged at 3000 rpm for 25min to separate the cells from the
supernatant. The supernatant was processed as described above.

Glucose, acetate, lactate, and succinate assays
Glucose concentration was measured using the glucose GO assay kit from Millipore (GAGO20). Acetate concentration was
measured using the Acetate assay kit (ab204719). D-lactate concentration was measured using the D-Lactate assay kit
(ab83429). Succinate concentration was measured using the Succinate assay kit (ab204718). For each assay, the supernatant
was diluted (if needed) to ensure that the OD readings are within the standard curve range.

pH measurement
Determination of pHwas done using the same filtered supernatant as for the assays described above. Bromocresol purple (BCP) was
used as a pH indicator. The standard curve was prepared by adding different amounts of HCl 1M to M9 without carbon, and by
measuring pH with an electronic pH-meter. pH of the samples was interpolated on the standard curve as described in (Yao and
Byrne, 2001).

Fermentation profile assignment
We assigned a fermentation profile- respirator (R) or fermenter (F) to all dominant families (Table S1). For instance, bacterial genera
belonging to the Enterobacteriaceae family are well-known fermenters while bacterial species belonging to the genus Pseudomonas
are well-known non-fermenters. Some rare taxa belong to families that cannot be assigned to R or F, thus they were not accounted
for in the R/F ratio. These taxa are at very low abundance, and therefore their effect on the R/F ratio is negligible. When counting
CFUs, R and F were distinguished by platting on chromogenic agar (HiCrome Universal differential Medium from Sigma). White col-
onies were counted as R and blue/purple colonies were counted as F. Each isolate was platted on chromogenic agar to confirm its R/
F assignment. There is a positive correlation between the R/F ratio obtained by CFU counting and by 16S sequencing (slope= 0.46,
intercept -0.066, R2=0.32; Figure S19) and the two ratios are within the same order of magnitude (Figure S20).

Short incubation time experiment
Wehad previously isolated the four dominant strains from one of the self-assembled communities shown in Figure 1A (Goldford et al.,
2018). Three of the strains belong to the Enterobacteriaceae family– Klebsiella, Raoultella, Citrobacter- and one strain belongs to the
Pseudomonadaceae family (Pseudomonas). Each strain was grown for 24h in chromogenic agar at 30C. A colony was picked and
resuspended in 500uL PBS 1x. Cells were then centrifuged for 10 min at 3500 rpm, washed, and re-suspended in PBS 1x (3 times in
total). After the final washing step, cells were normalized to an OD620 of 0.15 and the 4-strain community was established by mixing
the strains 1:1:1:1. 4ul from the mixture was transferred into 500uL of m9+glucose 0.2% in 6 replicates and incubated at 30C. The
cultures were then serially-transferred to fresh medium (1:125 dilution) every 48h for 5 transfers. After the 5th transfer, the cultures
were propagated for 5 more transfers of 48h (control treatment) (N=6) or 12h each (N=6). The relative abundance of each family was
determined by plating into chromogenic agar (Enterobacteriaceae appear as blue/purple colonies while Pseudomonas appear as
white colonies).

Soil sample collection
A soil sample was collected from a natural site in West Haven (CT, USA) using sterilized spatula, placed into a sterile bottle, and
returned to the lab. 10 g of soil sample were then placed into a new sterile bottle and soaked into 100mL of sterile PBS supplemented
with 200 mg/mL cycloheximide to inhibit eukaryotic growth. The bottle was vortexed and allowed to sit for 48 hours at room
temperature. After 48h, samples of the supernatant solution containing the ‘source’ soil microbiome were used as inoculum for
the experiment (see section below) or stored at -80C after mixing with 40% glycerol.

Growth medium and ‘no migration’ experimental setup
92 replicate communities from the same source community were cultured separately in the wells of 96 deep-well plates (VWR). Each
replicate community was initiated by inoculating 4uL from the source community into 500uL ofM9minimal media supplemented with
glucose 0.2% (i.e., 0.07 C-mol/L) (as in (Goldford et al., 2018)). The communities were grown at 30C under static conditions for 48h.
After 48h growth, 4uL from the grown culture was transferred to fresh media. This dilution-growth cycle was repeated 18 times. For
the first two growth cycles, cycloheximide (200 mg/mL) was added to the media. OD620 was measured at the end of each growth
cycle and samples of the grown communities were stored at -80C after mixing with 40% glycerol. In a parallel experiment, 93 repli-
cate communities were started with a 10x inoculation size (40ul) from the same source community, and propagated as
described above.
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Migration between local communities experiment
Similar to the treatment without migration, each replicate community was initiated by inoculating 4uL from the source community into
500uL of M9 minimal media. At the end of each growth cycle, however, 4uL from each well was pooled into a ‘migrant pool commu-
nity’ and diluted 10,000-fold. Each well of the fresh media was inoculated with 4uL of this migrant pool community in addition to the
4uL from the corresponding replicate community (well) from the previous growth cycle. Thus, each replicate community from the 96
deep-well plate represents a local community from the samemeta-community where the local communities are linked throughmigra-
tion. This migration step was performed for the first 12 growth cycles, followed by 6 dilution-growth cycles without migration (normal
transfer only). OD620 was measured at the end of each growth cycle and culture samples were stored at -80C after mixing with 40%
glycerol.

Migration from the regional pool experiment
Each replicate community was started with 4uL from the same source community into 500uL of M9 minimal media. At the start of
each growth cycle, 4uL from the source community was inoculated into fresh media in addition to the 4uL from the corresponding
replicate community (well) from the previous growth cycle. Thus, each replicate community from the 96 deep-well plate represents a
local community that is linked to its regional pool throughmigration. This migration step was performed for the first 12 growth cycles,
followed by 6 dilution-growth cycles without migration (normal transfer only). OD620 was measured at the end of each growth cycle
and culture samples were stored at -80C after mixing with 40% glycerol.

DNA extraction and library preparation
Samples to be sequenced were centrifuged for 30min at 3500rpm. DNA extraction was performed following the DNeasy 96 Blood &
Tissue kit protocol for animal tissues (QIAGEN) including the pre-treatment step for Gram-positive bacteria. DNA concentration was
quantified using the Quan-iT PicoGreen dsDNA Assay kit (Invitrogen) and normalized to 5ng/uL. 16S rRNA amplicon library prepa-
ration was conducted using a dual-index paired-end approach (Kozich et al., 2013) and has been described in detail in (Goldford
et al., 2018). The PCR reaction products were purified and normalized using the SequalPrep PCR cleanup and normalization kit
(Invitrogen).

Sequencing and taxonomy assignment
The community composition profile was based on 16S (V4) rRNA gene sequence analysis, a commonly used genetic marker for
classifying bacteria as it is highly conserved between different species. The samples were sequenced at the Yale Center for Genome
Analysis (YCGA) using the Illumina MiSeq (2x250 bp paired-end) sequencing platform. Post-sequencing processing of the raw se-
quences, namely demultiplexing and removing the barcodes, indexes and primers, was performed using QIIME (version 1.9, (Capor-
aso et al., 2010)). The generated fastq files for the forward and reverse sequences were analysed using the DADA2 pipeline (version
1.6.0) to infer exact sequence variants (ESVs) (Callahan et al., 2016). The forward and reverse reads were trimmed at position 240 and
160, respectively, and then merged with a minimum overlap of 100bp. All other parameters were set to the DADA2 default values.
Chimeras were removed using the ‘‘consensus’’ method in DADA2. The taxonomy of each 16S exact sequence variant (ESV) was
then assigned using the naı̈ve Bayesian classifier method (Wang et al., 2007) and the Silva reference database version 128 (Quast
et al., 2013) as described in DADA2. A single strain E. coli (n=10) and a commercial DNA mock community (D6305, Zymo Research,
Irvin, CA, USA) (n=12) were used as positive controls to correct for spurious detection during amplicon sequencing (Figure S13). In
Figure S20, the estimated 16S R/F ratio was corrected for amplicon abundance bias using a in-house cell mock community
composed of 5 isolates (1 Klebsiella, 1 Raoultella, 1 Aeromonas and 2 Pseudomonas) all mixed 1:1 by OD, thus giving a theoretical
R/F ratio of 0.6. This mock community was processed using the same DNA extraction and PCR protocols as the communities above
and sequenced at Microbiome Insights Inc. (Vancouver, Canada).

Isolation of dominant taxa
We isolated the four most abundant ESVs, two belonging to the Enterobacteriaceae family, one Pseudomonas and one Alcaligenes,
and verified their taxonomy by sequencing the full-length 16S rRNA gene (GENEWIZ). Taxonomy was assigned using both the Silva
database (v1.2.11) and the RDP Naive Bayesian rRNA Classifier Version 2.11 (training set 16). The two reference datasets provided
equivalent taxonomic assignments and confirmed the identity assigned to the 16S V4 rRNA sequences. One of the most dominant
ESVs belonging to the Enterobacteriaceae family was unidentified at the genus level but isolation of that strain followed by Sanger
sequencing on the full-length 16S rRNA gene revealed that it belongs to the genus Klebsiella. We therefore assigned that ESV to
Klebsiella. The two Klebsiella isolates display different morphologies on glucose agarose plates and an indole test (Remel Kovacs
Indole Reagent, #R21227) revealed that one of the isolates is indole positive while the other isolate is indole negative. Based on
this distinction, we decided to refer to the two Klebsiella as Klebsiella positive (Kp) and Klebsiella negative (Km).

Mapping isolates to amplicon sequencing data
To match our isolates from Sanger sequencing (full-length 16S rDNA sequence) to the amplicon sequencing data (ESVs) of the com-
munities, we performed a pairwise alignment using the function pairwiseAlignment from the R packageBiostrings (Pagès et al., 2017),
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with alignment type set to ’’local". For each isolate in a community, we aligned its full-length Sanger sequence with all possible ESVs
from the same community and obtained the reported alignment scores. Sanger-ESV alignment with highest alignment score was
picked. If two Sanger sequences werematched to one ESV, the onewith lower alignment score was dropped (19 of 73 isolate Sanger
sequences were dropped). In the 54 pairwise alignments, the shortest consensus length is 234 base pairs, with 45 full matches, eight
one base pair mismatches, and one two base pair mismatches.

Bottom-up invasion experiment
Weperformed an invasion experiment betweenKlebsiella (Kp) (resident) andPseudomonas and/orAlcaligenes (invaders) either alone
(mono-invasion) or together (co-invasion). Prior to the start of the invasion experiment, the three strains were grown from frozen glyc-
erol stocks alone into LB-agarose plates. For each strain, colonies were re-suspended into 1xM9 (without glucose) and normalized to
an OD620 of 0.1. The normalized A and P stocks were then serially diluted independently 10-fold four times from 10-1 to 10-4. Note
that here we refer to OD620 of 0.1 as the baseline OD (100). For the co-invasion assays, Alcaligenes and Pseudomonas were mixed
together for all five A and P dilutions (100 to 10-4) generating 25 different A-P initial density combinations. Competitions were started
by mixing 2uL of Kp with 2uL of the A:P mixtures (co-invasion) or 2uL of A or P monocultures (mono-invasion) at the 5 different
dilutions into 500uL of M9 + glucose. In total, 36 invasion scenarios with different initial frequencies and densities of A and/or P
(25 co-invasions, 10 mono-invasions, and Kp alone) were investigated in duplicate, setting the initial position of the population in
the phase portrait shown in Figure 3. Strains were grown for 48h without shaking at 30C and then diluted 1:125 into fresh medium,
and this growth-dilution cycle was repeated for 12 transfers. The relative abundance of each strain was estimated by plating
(Colony-Forming Units) on LB-agarose plates.

Probability distributions and quasi-potential
In Figure 2C, shown are the probability density distributions of the relative abundance (log10) of the dominant Alcaligenes (A) and
Pseudomonas (P) ESVs at Transfer 18 in the communities self-assembled from the same inoculum under the four different treatments
described above, that is, in the ‘no migration’ (both low and high inocula), ‘global migration’, and ‘regional migration’ (n=370). For the
bimodal distributions, the distribution parameters for each Gaussian (lambda, mu, and sigma) were obtained by fitting a mixture
distribution with the normalmix EM function in R. The position of the local minimum in the between the two local maxima were deter-
mined using the FindMinimum function in Mathematica.

The potential U(x)was derived using the Fokker-Planck equation. The potential U(x) and the probability density of x are connected
through the Fokker-Planck equation (Lahti et al., 2014), where U(x) is given by:

UðxÞ = # D2

2
lnðPðxÞÞ

where D is the noise level. Assuming that x is the log10 relative abundance of A (or P) at equilibrium (T18), we can derive the energy
potential U(a) and U(p) from their probability distributions (P(a) and P(p)). Assuming that D=1,

UðaÞ = # lnðPðaÞÞ=2

and

UðpÞ = # lnðPðpÞÞ=2

The roots of the potential U(x) were calculated using the FindRoot function in Mathematica.

Phase diagram and separatrix
The phase diagram drawn in Figures 4B and 4C was obtained by analysis of the outcome of the bottom-up invasion experiment
described above and shown in Figures 3 and S14. The ‘transition’ region was determined as follow. First, we identified the ‘flickering’
region of the A-P initial frequency space where the outcome either changed (e.g. from coexistence (gray) to A dominated state (yel-
low)) or remained gray at any point during one of the 3 transfers (T3, T8, T12) and in one or both of the 2 replicates analysed. The basin
boundary ofAlcaligeneswas determined by taking, for each initial frequency, themid-points between the initial frequencies inside the
basin of attraction ofAlcaligenes and inside the ’flickering’ region that are closest to the transition line. Similarly, the basin boundary of
Pseudomonas was determined by taking, for each initial frequency, the mid-points between the initial frequencies inside the basin of
attraction of Pseudomonas and inside the ’flickering’ region that are closest to the transition line. The separatrix shows the midline
between the two boundaries. In Figure 4B, the datapoints where the relative abundance is below the detection threshold are arbi-
trarily set to a value of -4.33.

Community assembly in alternative carbon sources
Four replicate communities, all started from the same soil inoculum, were serially transferred every 48h in minimal medium supple-
mented with a single carbon source (glucose, fructose, cellobiose, ribose, citrate, and glutamine) for a total of 10 transfers. The single
carbon sources were adjusted to equal C-molar concentrations. The serial transfers were performed under the same conditions as
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described in the ‘Growth medium and no migration experimental setup’ section above. The DNA extraction was performed with the
DNeasy 96 Blood & Tissue kit for animal tissues (QIAGEN) as described above. The 16S rRNA gene amplicon library preparation
and sequencing were performed by Microbiome Insights, Vancouver, Canada (www.microbiomeinsights.com). The library
preparation was done as described above. The samples were sequenced on the Illumina MiSeq using the 300-bp paired end kit
v3.chemistry.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details can be found in the figure legends, Results, or Methods. All statistical analysis was performed with R.
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