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Emergent simplicity in microbial
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A major unresolved question in microbiome research is whether the complex taxonomic
architectures observed in surveys of natural communities can be explained and predicted
by fundamental, quantitative principles. Bridging theory and experiment is hampered
by the multiplicity of ecological processes that simultaneously affect community assembly
in natural ecosystems. We addressed this challenge by monitoring the assembly of
hundreds of soil- and plant-derived microbiomes in well-controlled minimal synthetic
media. Both the community-level function and the coarse-grained taxonomy of the
resulting communities are highly predictable and governed by nutrient availability, despite
substantial species variability. By generalizing classical ecological models to include
widespread nonspecific cross-feeding, we show that these features are all emergent
properties of the assembly of large microbial communities, explaining their ubiquity in
natural microbiomes.

M
icrobial communities play critical roles
in awide range of natural processes, from
animal development and host health to
biogeochemical cycles (1–3). Recent ad-
vances in DNA sequencing have allowed

us to map the composition of these communities
with high resolution. This has motivated a surge
of interest in understanding the ecologicalmech-
anisms that govern microbial community as-
sembly and function (4). A quantitative, predictive
understanding of microbiome ecology is required
to design effective strategies to rationally manip-
ulate microbial communities toward beneficial
states.
Surveys of microbiome composition across a

wide range of ecological settings, from the ocean
to the human body (2, 3), have revealed intriguing
empirical patterns in microbiome organization.
These widely observed properties include high
microbial diversity, the coexistence of multiple
closely related species within the same functional
group, functional stability despite large species
turnover, and different degrees of determinism
in the association between nutrient availability
and taxonomic composition at different phylo-

genetic levels (3, 5–10). These observations have
led to the proposal that common organizational
principles exist in microbial community assembly
(6, 7). However, the lack of a theory ofmicrobiome
assembly is hindering progress toward explaining
and interpreting these empirical findings, and
it remains unknown which of the functional
and structural features exhibited by microbiomes
reflect specific local adaptations at the host or
microbiome level (10) and which are generic
properties of complex, self-assembled micro-
bial communities.
Efforts to connect theory and experiments to

understand microbiome assembly have typically
relied on manipulative bottom-up experiments
with a few species (11–13). Although this approach
is useful for providing insights into specific mech-
anisms of interactions, it is unclear to what extent
findings from these studies scale up to predict the
generic properties of largemicrobial communities
or the interactions therein. Of note is the ongoing
debate about the relative contributions of com-
petition and facilitation (14, 15) and the poorly
understood role that high-order interactions play
in microbial community assembly (11, 16, 17). To
move beyond empirical observations and con-
nect statistical patterns of microbiome assembly
with ecological theory, we need to study the as-
sembly of large numbers of large multispecies
microbiomes under highly controlled and well-
understood conditions that allow proper com-
parison between theory and experiment.

Assembly of large microbial
communities on a single
limiting resource

To meet this challenge, we followed a high-
throughput ex situ cultivation protocol to mon-
itor the spontaneous assembly of ecologically

stable microbial communities derived from nat-
ural habitats in well-controlled environments;
we used synthetic (M9) minimal media con-
taining a single externally supplied source of
carbon, as well as sources of all of the necessary
salts and chemical elements required for micro-
bial life (Fig. 1A). Intact microbiota suspensions
were extracted from diverse natural ecosystems,
such as various soils and plant leaf surfaces
(methods). Suspensions ofmicrobiota from these
environmentswere highly diverse and taxonomi-
cally rich (fig. S1), ranging between 110 and 1290
exact sequence variants (ESVs). We first inocu-
lated 12 of these suspensions of microbiota into
fresh minimal media with glucose as the only
added carbon source and allowed the cultures to
grow at 30°C in static broth. We then passaged
the mixed cultures in freshmedia every 48 hours
with a fixed dilution factor of D = 8 × 10−3 for a
total of 12 transfers (~84 generations). At the end
of each growth cycle, we used 16S ribosomal
RNA (rRNA) amplicon sequencing to assay the
community composition (Fig. 1A and methods).
High-resolution sequence denoising allowed us
to identify ESVs, which revealed community struc-
ture at single-nucleotide resolution (18).
Most communities stabilized after ~60 genera-

tions, reaching stable population equilibria in
nearly all cases (Fig. 1B and fig. S2). For all of
the 12 initial ecosystems, we observed large mul-
tispecies communities after stabilization that
ranged from 4 to 17 ESVs at a sequencing depth
of 10,000 reads; further analysis indicated that
this is a conservative estimate of the total rich-
ness in our communities (figs. S3 and S4 and
methods). We confirmed the taxonomic assign-
ments generated from amplicon sequencing by
culture-dependent methods, including the iso-
lation and phenotypic characterization of all
dominant genera within a representative com-
munity (fig. S5).

Convergence of bacterial
community structure at the
family taxonomic level

High-throughput isolation and stabilization of
microbial consortia allowed us to explore the
rules governing the assembly of bacterial com-
munities in well-controlled synthetic environ-
ments. At the species (ESV) level of taxonomic
resolution, the 12 natural communities assembled
into highly variable compositions (Fig. 1C). How-
ever, when we grouped ESVs by higher taxonomic
ranks, we found that all 12 stabilized communities—
with very diverse environmental origins—converged
into similar family-level community structures
dominated by Enterobacteriaceae and Pseudo-
monadaceae (Fig. 1D). In other words, a similar
family-level composition arose in all commun-
ities despite their very different starting points.
This is further illustrated in fig. S6, where we
show that the temporal variability (quantified
by the b diversity) in family-level composition
is comparable to the variability across inde-
pendent replicates. The same is not true when
we compare taxonomic structure at the subfamily
(genus) level.
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To better understand the origin of the tax-
onomic variability observed below the family
level, we started eight replicate communities from
each of the 12 starting microbiome suspensions
(inocula) and propagated them in minimal me-
dia with glucose, as in the previous experiment.
Given that the replicate communities were as-
sembled in identical habitats and were inoculated
from the same pool of species, any observed
variability in community composition across rep-
licates would suggest that random colonization
from the regional pool and microbe-microbe in-
teractions are sufficient to generate alternative
species-level community assembly.
For most of the inocula (9 out of 12), replicate

communities assembled into alternative stable
ESV-level compositions, while still converging
to the same family-level attractor described in
Fig. 1E (see also fig. S6). One representative
example is shown in Fig. 1, F and G; all eight
replicates from the same starting inoculum
assembled into strongly similar family-level
structures, which were quantitatively consistent
with those found before (Fig. 1D). However,
different replicates contained alternative Pseudo-
monadaceae ESVs, and the Enterobacteriaceae

fraction was constituted by either an ESV from
the Klebsiella genus or a guild consisting of var-
iable subcompositions of Enterobacter,Raoultella,
and/or Citrobacter as the dominant taxa.
For the remaining (3 out of 12) inocula, all

replicates exhibited strongly similar population
dynamics to each other and equilibrated to sim-
ilar population structures at all levels of taxo-
nomic resolution (fig. S7). The reproducibility in
population dynamics between replicate commun-
ities indicates that experimental error is not the
main source of variability in community compo-
sition. The population bottlenecks introduced
by the serial dilutions in fresh media have only
a modest effect on the observed variability in
population dynamics (fig. S8). However, the
dilution factor can influence community as-
sembly through means other than introducing
population bottlenecks—for instance, by set-
ting the number of generations in between dilu-
tions and by diluting, to a greater or lesser extent,
the environment generated in a previous growth
period.
Despite the observed species-level variation

in community structure, the existence of family-
level attractors suggests that fundamental rules

govern community assembly. Recent work on
natural communities has consistently found
that environmental filtering selects for convergent
function across similar habitats, while allowing
for taxonomic variability within each functional
class (5, 6). In our assembled communities in
glucose media, fixed proportions of Entero-
bacteriaceae and Pseudomonadaceae may have
emerged owing to a competitive advantage, given
thewell-known glucose uptake capabilities of the
phosphotransferase system in Enterobacteriaceae
and ABC (adenosine triphosphate–binding cas-
sette) transporters in Pseudomonadaceae (19).
This suggests that the observed family-level at-
tractor may change if we add a different carbon
source to our synthetic media.
To determine the effect of the externally pro-

vided carbon source on environmental filtering,
we repeated the community assembly experi-
ments with eight replicates of all 12 natural com-
munities, this time using one of two alternative
single carbon sources—citrate or leucine—instead
of glucose. Consistent with previous experiments
using glucose minimal media, communities that
assembled on citrate or leucine contained large
numbers of species: At a sequencing depth of
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Fig. 1. Top-down assembly
of bacterial consortia.
(A) Experimental scheme:
Large ensembles of
taxa were obtained from
12 leaf and soil samples
and used as inocula in
serial dilution cultures
containing synthetic
media supplemented
with glucose as the sole
carbon source. After each
transfer, 16S rRNA
amplicon sequencing was
used to assay bacterial
community structure.
(B) Analysis of the
structure of a representative
community (from
inoculum 2) after
every dilution cycle
(about seven generations)
reveals a five-member
consortium from the
Enterobacter, Raoultella,
Citrobacter, Pseudomonas,
and Stenotrophomonas
genera. The community
composition of all
12 starting inocula after
84 generations is shown
at (C) the exact sequence
variant (ESV) level or
(D) the family taxonomic
level, converging to
characteristic fractions of
Enterobacteriaceae and Pseudomonadaceae. (E) Simplex representation of family-level taxonomy before (t = 0) and after (t = 84) the passaging
experiment. (F and G) Experiments were repeated with eight replicates from a single source (inocula 2). Communities converged to very similar
family-level distributions (G) but displayed characteristic variability at the genus and species level (F).
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10,000 reads, communities stabilized on leu-
cine contained 6 to 22 ESVs, and communities
stabilized on citrate contained 4 to 22 ESVs.
As was the case for glucose, replicate commu-
nities assembled on citrate and leucine also
differed widely in their ESV-level composi-
tions, while converging to carbon source–
specific family-level attractors (Fig. 2A and
figs. S9 and S10).
Family-level community similarity (Renkonen

similarity) was, on average, higher between com-
munities passaged on the same carbon source
(median, 0.88) than between communities pas-
saged from the same environmental sample
(median, 0.77; one-tailed Kolmogorov-Smirnov
test, P < 10−5; fig. S11). Communities stabilized
on citrate media had a significantly lower frac-
tion of Enterobacteriaceae (Mann-Whitney
U test, P < 10−5) and were enriched in Flavo-
bacteriaceae (Mann-Whitney U test, P < 10−5)
relative to communities grown on glucose; com-
munities stabilized on leucine media had no
growth of Enterobacteriaceae and were enriched
in Comamonadaceae relative to communities
grown on glucose (Mann-Whitney U test, P <
10−5) or citrate (Mann-Whitney U test, P < 10−5).
These results suggest that the supplied source

of carbon governs community assembly. To quan-
tify this effect, we used a machine learning ap-
proach and trained a support vector machine
to predict the identity of the supplied carbon
source from the family-level community composi-
tion. We obtained a cross-validation accuracy
of 97.3% (Fig. 2B and methods). Importantly,
we found that considering the tails of the family-
level distribution (as opposed to just the two
dominant taxa) increased the predictive accuracy
(Fig. 2B), which indicates that carbon source–
mediated determinism in community assembly
extends to the entire family-level distribution,
including the rarer members.
Rather than selecting for the most fit single

species, our environments select complex com-
munities that contain fixed fractions of multiple
coexisting families whose identities are deter-
mined by the carbon source in a strong and
predictable manner (fig. S11). We hypothesized
that taxonomic convergence might reflect selec-
tion by functions that are conserved at the
family level. Consistent with this idea, we find
that the inferred community metagenomes as-
sembled in each type of carbon source exhibit
substantial clustering by the supplied carbon
source (Fig. 2C) and are enriched in pathways
for its metabolism (fig. S11). When we spread
the stabilized communities on agarose plates,
we routinely found multiple identifiable col-
ony morphologies per plate, showing that mul-
tiple taxa within each community are able to
grow independently on (and thus compete for)
the single supplied carbon source. This sug-
gests that the genes and pathways that confer
each community with the ability to metabolize
the single supplied resource are distributed
among multiple taxa in the community, rather
than being present only in the best-competitor
species.

Widespread metabolic facilitation
stabilizes competition and
promotes coexistence
Classic consumer-resource models indicate that
when multiple species compete for a single,
externally supplied growth-limiting resource,
the only possible outcome is competitive ex-
clusion unless specific circumstances apply
(20–25). However, this scenario does not ade-
quately reflect the case ofmicrobes, whose ability
to engineer their own environments both in
the laboratory (26–29) and in nature (30, 31) is
well documented. Thus, we hypothesized that
the observed coexistence of competitor spe-
cies in our experiments may be attributed to
the generic tendency of microbes to secrete
metabolic by-products into the environment,
which could then be used by other community
members.
To determine the plausibility of niche creation

mediated by metabolic by-products, we analyzed
one representative glucose community in more
depth. We isolated members of the four most
abundantgenera in this community (Pseudomonas,
Raoultella, Citrobacter, and Enterobacter), which
together represented ~97% of the total popula-

tion in that community (Fig. 3A). These isolates
had different colonymorphologies and were also
phenotypically distinct (fig. S5). All isolates were
able to form colonies in glucose agarose plates,
and all grew independently in glucose as the only
carbon source, which indicates that each isolate
could compete for the single supplied resource.
All four species were able to stably coexist with
one another when the community was reconsti-
tuted from the bottom up by mixing the isolates
together (fig. S5). To test the potential for cross-
feeding interactions in this community, we grew
monocultures of the four isolates for 48 hours in
synthetic M9 media containing glucose as the
only carbon source (Fig. 3B). At the end of the
growth period, the glucose concentration was
too low to be detected, indicating that all of the
supplied carbon had been consumed and that
any carbon present in the media originated from
metabolic by-products previously secreted by
the cells. To test whether these secretions were
enough to support growth of the other species
in that community, we filtered the leftovermedia
to remove cells and added it to fresh M9 media
as the only source of carbon (Fig. 3B). We found
that all isolates were able to grow on every other
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Fig. 2. Family-level and metagenomic attractors are associated with different carbon
sources. (A and B) Family-level community compositions are shown for all replicates across
12 inocula grown on either glucose, citrate, or leucine as the limiting carbon source. Data
points are colored by carbon source (A) or initial inoculum (B). (C) A support vector machine
(methods) was trained to classify the carbon source from the family-level community structure.
Low-abundance taxa were filtered using a predefined cutoff (x axis) before training and
performing 10-fold cross-validation (averaged 10 times). Classification accuracy with only
Enterobacteriaceae and Pseudomonadaceae resulted in a model with ~93% accuracy
(rightmost bar), while retaining low-abundance taxa (relative abundance cutoff of 10−4) yielded
a classification accuracy of ~97% (leftmost bar). (D) Metagenomes were inferred using
PICRUSt (40) and dimensionally reduced using t-distributed stochastic neighbor embedding
(tSNE), revealing that carbon sources are strongly associated with the predicted functional
capacity of each community.
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isolate’s secretions (e.g., Fig. 3C), forming a fully
connected facilitation network (Fig. 3D). Growth
on the secretions of other community members
was strong, often includingmultiple diauxic shifts
(fig. S12), and the amount of growth on secretions
was comparable to that on glucose (fig. S13),
suggesting that the pool of secreted by-products
is diverse and abundant in this representative
community.

To find out whether growth on metabolic
by-products is common among our communities,
we thawed 95 glucose-stabilized communities
(seven or eight replicates from each of 12 initial
environmental habitats) and grew them again
on glucose as the only carbon source for an
extra 48-hour cycle. In all 95 communities,
glucose was completely exhausted after 24 hours
of growth (Fig. 3E), yet most communities con-

tinued growing after the glucose had been de-
pleted (Fig. 3E). Moreover, community growth
on the secreted by-products was strong: On
average, communities produced ~25% asmuch
biomass on the secretions alone as they did over
the first 24 hours when glucose was present
(Fig. 3F). Propidium iodide staining and phase-
contrast imaging of communities at the single-
cell level identified low numbers of permeabilized
or obviously lysed cells (fig. S14). This supports
the hypothesis that metabolic by-product secre-
tion (rather than cell lysis) is the dominant
source of the observed cross-feeding. However,
lytic events that leave no trace in the form of
empty bacterial cell envelopes would not have
been detected in our micrographs, so a con-
tribution from cell death to our results can-
not be entirely ruled out. Other mechanisms
may also operate together with facilitation in
specific communities to support high levels
of biodiversity (16, 24, 32–34). In experiments
where the cultures were well mixed by vigorous
shaking, we also found communities contain-
ing multiple taxa, indicating that spatial struc-
ture is not required for coexistence (fig. S15).
In addition, we did not observe effects from
temporal competitive niches in our experiments
(fig. S16).
Recent work has suggested that alteration of

the pH by bacterial metabolism may also have
important growth-limiting effects (35, 36) and
can be a driver of microbial community assembly.
Our results suggest that although individual iso-
lates can substantially acidify their environment
when grown in glucose as monocultures (e.g.,
the pHdrops to 4.85 in Citrobactermonocultures
and to 5.55 in Enterobacter monocultures after
48 hours), our stabilized communities exhibit
only modest changes in pH as they grow in
glucose minimal media, dropping by less than
1 unit in most communities and stabilizing to
pH 6.5 in all cases after 48 hours of growth (fig.
S17). In other carbon sources, such as leucine,
the pH is even more stable than in glucose (fig.
S17). Altogether, our results suggest that acid-
ification by fermentation may be “buffered” by
the community relative to the effect observed
inmonocultures. Although beyond the scope of
this work, efforts to elucidate the roles of other
mechanisms that may stabilize competition,
such as phage predation (23) or nontransitive
competition networks (16), will more fully char-
acterize the landscape of interactions in these
microcosms.

A generic consumer-resource model
recapitulates experimental observations

Our experiments indicate that competition for
a single limiting nutrient may be stabilized by
nonspecific metabolic facilitation, leading to co-
existence. To test whether this feature alone
promotes coexistence, we simulated a community
assembly process on a single supplied carbon
source, using a version of the classic MacArthur
consumer-resource model (37), which was mod-
ified to include nonspecific cross-feeding inter-
actions. Cross-feeding was modeled through a
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Fig. 3. Nonspecific metabolic facilitation may stabilize competition for the supplied
resource. (A) Representatives of the four most abundant genera in a representative
community (percentages shown in the pie chart) were isolated on M9 minimal glucose
medium. (B) Experimental setup: Isolates were independently grown in 1X M9 media
supplemented with 0.2% glucose for 48 hours, after which cells were filtered out from the
suspension. The filtrate was mixed 1:1 with 2X M9 media in the absence of any other carbon
sources and used as the growth media for all other isolates (methods). (C) Three replicate
growth curves of the Citrobacter isolate on either M9-glucose media (gray) or the M9-filtrate
media from Enterobacter monoculture (black). Maximum growth rate (r) and carrying capacity
(K) were obtained by fitting to a logistic growth model. (D) All isolates were grown on every
other isolate’s metabolic by-products, and logistic models were used to fit growth curves. We
plotted the fitted growth parameters (carrying capacity) as edges on a directed graph. Edge
width and color encode the carrying capacity of the target node isolate when grown using
the secreted by-products from the source node isolate. Edges from the top node encode the
carrying capacity on 0.2% glucose. (E and F) Growth curves of 95 stabilized communities in
M9 glucose media (gray lines) were obtained by measuring the optical density at 620 nm (OD620)
at different incubation times. Open circles represent the mean OD620 over all communities at
different time points, joined by a dashed line as a guide to the eye. Communities grew on average
an additional 25% after glucose had been entirely depleted (~24 hours).
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stoichiometric matrix that encodes the propor-
tion of a consumed resource that is secreted back
into the environment as a metabolic by-product
(supplementary materials). Setting this matrix to
zero results in no by-products being secreted
and recovers the classic results for the consumer-
resource model in a minimal environment with
one resource: The species with the highest
consumption rate of the limiting nutrient com-
petitively excludes all others (Fig. 4A, inset). How-
ever, when we drew the stoichiometric matrix
from a uniform distribution (while ensuring
energy conservation) and initialized simula-
tions with hundreds of “species” (each defined
by randomly generated rates of uptake of each
resource), coexistence was routinely observed
(Fig. 4A). All of the coexisting “species” in this

simulationwere generalists, capable of growing
independently on the single supplied resource
and on each other species’s secretions.
Our experiments showed that the family-level

community composition is strongly influenced
by the nature of the limiting nutrient, which
may be attributed to the metabolic capabilities
associated with each family. We modeled this
scenario by developing a procedure that sampled
consumer coefficients from four metabolic “fam-
ilies,” ensuring that consumers from the same
family were metabolically similar (supplementary
materials and fig. S18). We randomly sampled a
set of 100 consumer vectors (or “species”) from
four families, then simulated growth for 20 ran-
dom subsets of 50 species on one of three re-
sources. As in our experimental data (Fig. 2A),

simulated communities converged to similar
family-level structures (Fig. 4C), despite display-
ing variation at the species level (Fig. 4B). We
confirmed the correspondence between family-
level convergence and functional convergence by
computing the community-wide metabolic ca-
pacity per simulation, resulting in a predicted
community-wide resource uptake rate for each
resource (supplementary materials). Commun-
ities grown on the same resource converged
to similar uptake capacities with an enhanced
ability to consume the limiting nutrient (Fig.
4D). Importantly, this functional convergence
was exhibited evenwhen consumers were drawn
from uniform distributions, with no enforced
family-level consumer structure, suggesting that
the emergence of functional structure at the
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Fig. 4. A simple extension of classic ecological models recapitulates
experimental observations. MacArthur’s consumer-resource model
was extended to include 10 by-product secretions along with
consumption of a single primary limiting nutrient (supplementary
materials), controlled by secretion coefficient Dba, which encodes the
proportion of the consumed resource a that is transformed to resource
b and secreted back into the environment. Consumer coefficients
were sampled from four distributions, representing four “families” of
similar consumption vectors (fig. S19 and supplementary text).
(A) Simulations using randomly sampled secretion and uptake rates
resulted in coexistence of multiple competitors, whereas setting secretion
rates to zero eliminated coexistence (inset). a.u., arbitrary units.
(B and C) Random ecosystems often converged to similar “family”-level

structures (C), despite variation in the “species”-level structure
(B). The “family”-level attractor changed when a different resource
was provided to the same community (lower plots). (D) The
total resource uptake capacity of the community was computed
(supplementary materials) and is, like the family-level structure,
highly associated with the supplied resource. (E) Communities that
formed did not simply consist of single representatives from each
family, but often of guilds of several species within each family,
similar to what we observed experimentally. (F) The topology of the
flux distribution shows that surviving species all compete for the
primary nutrient, and competition is stabilized by differential
consumption of secreted by-products. The darkness of the arrows
encodes the magnitude of flux.
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community level is auniversal feature of consumer-
resource models (fig. S19).
We frequently observed that several spe-

cies belonging to the same metabolic family
could coexist at equilibrium. These “guilds” of
coexisting consumers from the same family
were capable of supporting the stable growth
of rare (<1% relative abundance) taxa (Fig. 4E),
similar to what we observed in our experimen-
tal data (Fig. 1, C and E). Our model suggests
that species are stabilized by a dense facilita-
tion network (Fig. 4F), consistent with obser-
vations of widespread metabolic facilitation in
experiments (Fig. 3D). Thus, we find that sim-
ulations of community dynamics with randomly
generated metabolisms and resource uptake
capabilities capture a wide range of qualitative
observations from our experiments and recapit-
ulate previous empirical observations in natural
communities (3, 10).

Discussion

In the absence of a theory of microbiome as-
sembly, it is often difficult to determine whether
empirically observed features of natural micro-
biomes are the result of system-specific deter-
minants, such as evolutionary history and past
selective pressures at the host level (10), or
whether they are simply generic emergent prop-
erties of large self-assembled communities. Our
results show that the generic statistical prop-
erties of large consumer-resource ecosystems
include large taxonomic diversity even in simple
environments, a stable community-level function
in spite of species turnover, and a mixture of
predictability and variability at different taxo-
nomic depths in how nutrients determine com-
munity composition. All of these features are
not only observed in our experiments, but also
have been reported in systems as diverse as the
human gut (3, 10), plant foliages (6), and the
oceans (2, 38).
Our theoretical results thus provide an ex-

planation for the ubiquity of these empirical
findings and suggest that they may reflect
universal and generic properties of large self-
assembled microbial communities. In spite
of their simplicity, consumer-resource models
may not only capture many of the generic qual-
itative features observed in the experiments,
but also recapitulate the more subtle aspects,
including the existence of temporal blooms in
species that eventually go extinct and family-
level similarity of communities (fig. S20 and
Fig. 4A). However, the models lack biochemical
detail and thus do not have the resolution to
explain other experimental results such as pH
changes, diauxic shifts, or the fact that glucose
and citrate communities are more similar to
each other than they are to those stabilized in
leucine (Fig. 2A).
The theory and simple experimental setup

described above also allowed us to identify wide-
spread mechanisms that lead to the assembly
of large, stable communities. We find evidence
that densely connected cross-feeding networks
may stabilize competition within guilds of highly

related species that are all strong competitors for
the supplied carbon source. Such cross-feeding
networks naturally lead to collective rather than
pairwise interactions, supporting the hypothesis
that higher-order interactions play a critical sta-
bilizing role in complex microbiomes (16, 17).
Whether these findings are generic in more
complex environments with a larger number
of externally supplied resources remains to be
elucidated. For instance, the experiments and
theory presented in this work indicate that the
stabilizedmicrobial communities consist of meta-
bolic generalists, rather thanmetabolic specialists
(39), capable of consuming both the supplied
resource andmetabolic by-products. It is unclear
whether these findings are generalizable to
microbial communities adapted to static envi-
ronments where metabolic specialization may
confer fitness advantages (39). We propose that
high-throughput top-down approaches to com-
munity assembly that are amenable to direct
mathematical modeling are an underused
but highly promising avenue to identify generic
mechanisms and statistical rules of micro-
biome assembly, as well as a stepping stone
toward developing a quantitative theory of the
microbiome.
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Materials and Methods 20 
 21 
 22 
Isolating microbial communities from natural ecosystems 23 
 24 

Leaf or soil samples (~1 g) were collected from natural environments using sterile tweezers 25 
and placed in 15 mL falcon tubes.  In the lab, 10 mL of 5 % NaCl buffer was added to each 26 
sample and allowed to incubate for ~48 hours at room temperature.  40% glycerol stock solutions 27 
were prepared from aqueous sample suspensions and frozen at -80 °C for storage. 28 
 29 
Preparation of 96-well media plates 30 
 31 

All media contained 0.07 C-mole/L of carbon source (glucose, citrate or leucine) and was 32 
sterile-filtered with a 0.22 µm filter (Millipore).  Stock solutions of carbon sources were stored at 33 
4 °C for no more than 1 month.  M9 media was prepared from concentrated stocks of M9 salts 34 
(without MgSO4 or CaCl2) and stock solutions of MgSO4 and CaCl2.  500 µL cultures containing 35 
450 µL of sample and 50 µL stock carbon source were grown in 96 deep-well plates (VWR). For 36 
the first two cell passages, cycloheximide was added to the media at a concentration of 200 37 
µg/mL to inhibit eukaryotic growth. 38 

 39 
Passaging microbial populations 40 
 41 

Starting inocula were obtained directly from the initial microbiota solution by inoculating 4 42 
µL into 500 µL culture media.  For each sample, 4 µL of the culture medium was dispensed into 43 
all 60 wells of the fresh media plate.  Cultures were allowed to grow for 48 hours at 30 °C in 44 
static broth, then each culture was homogenized by pipetting up and down 10 times before 45 
passaging. Passaging was performed by taking 4 µL from each culture to use as inocula in 500 46 
µL of fresh media, and cells were allowed to grow again.  Cultures were passaged 12 times (~84 47 
generations).  Optical density (OD620) was used to measure biomass in cultures after the 48-48 
hour growth cycle.  Samples to be sequenced were collected and stored by spinning down in a 49 
micro-centrifuge for 10 min at 14,000 RPM at room temperature. Cell pellets were stored at -20 50 
°C. 51 

 52 
DNA extraction, library preparation and sequencing 53 
 54 

Cell pellets were re-suspended and incubated at 37 °C for 30 min in enzymatic lysis buffer 55 
(20 mM Tris-HCl, 2mM sodium EDTA, 1.2% Triton X-100) and 20 mg/mL of lysozyme from 56 
chicken egg white (Sigma-Aldrich) to lyse the cell walls of Gram-positive bacteria. Following 57 
cell lysis, the DNA extractions were performed following the DNeasy 96 protocol for animal 58 
tissues (Qiagen). The clean DNA was eluted in 100 µL elution buffer of 10 mM Tris-HCl, 0.5 59 
mM EDTA at pH 9.0. DNA concentration was quantified using Quan-iT PicoGreen dsDNA 60 
Assay Kit (Molecular Probes, Inc.) and normalized to 5 ng/µL for subsequent 16S rRNA 61 
sequencing. 16S rRNA amplicon library preparation was conducted using a dual-index paired-62 
end approach developed by Kozich et al (41).  Briefly, PCR-amplified libraries were prepared 63 
using dual-index primers (F515/R806) to generate amplicons spanning the V4 region of the 16S 64 
rRNA gene, then pooled and sequenced using the Illumina MiSeq platform. For each sample, a 65 
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30-cycle PCR was performed in duplicate in 20 µL reaction volumes using 5 ng of DNA, dual 66 
index primers, and AccuPrime Pfx SuperMix (Invitrogen).  Thermocycling conditions consisted 67 
of a 2-min initial denaturation step at 95 °C,  followed by 30 cycles of the following PCR 68 
scheme: (a) 20-second denaturation at 95 °C, (b) 15-second annealing at 55 °C, and (c) 5-min 69 
extension at 72 °C.  PCR was terminated after a 10-min extension step at 72 °C.  After pooling 70 
amplicons from duplicate reactions, the PCR products were purified and normalized using the 71 
SequalPrep PCR cleanup and normalization kit (Invitrogen). Libraries were then pooled and 72 
sequenced using Illumina MiSeq v2 reagent kit, which generated 2x250 base pair paired-end 73 
reads at the Yale Center for Genome Analysis (YCGA).  For shaking control experiments (Fig. 74 
S15), library preparation and sequencing was performed at SeqMatic (Fremont, CA).  75 
Sequencing and library preparation were identical when compared to the procedure described 76 
above, except primers targeted the V3-V4 region of 16S rRNA gene. 77 
 78 
16S rRNA sequencing analysis 79 

 80 
QIIME 1.9.0 (42) was used to demultiplex and remove barcodes, indexes and primers from 81 

raw files, producing FASTQ files with for both the forward and reverse reads for each sample. 82 
Dada2 version 1.1.6 was used to infer exact sequence variants (ESVs) from each sample (18). 83 
Briefly, forward and reverse reads were trimmed to 220 and 160 nucleotides, respectively.  All 84 
other parameters were set to default values.  Sequences below 230 or above 242 nucleotides were 85 
discarded (indicative or poor merging of paired reads).  Chimeric PCR products from two related 86 
species (i.e. Bimeras) were removed using the “tableMethod” parameter set to “consensus.” A 87 
naive Bayes classifier was used to assign taxonomy to Exact Sequence Variants (ESVs) using the 88 
SILVA version 123 database (43). Metagenome inference was performed using PICRUSt (40). 89 
ESVs were assigned to OTUs using the greengenes database version 13.5 using the QIIME 90 
function pick_closed_reference_otus.py, with a 97 % similarity cutoff.   Communities were 91 
normalized using the normalize_otus.py function in PICRUSt, and the metagenomes were 92 
estimated using the estimate_metagenome.py routine.   We note however that imputed 93 
metagenomes may be biased by unequal annotation of representative species as well as 94 
variability between taxa with similar 16S sequences but different genome composition. 95 
 96 
 97 
Fermentation assays and isolation of strains 98 
 99 

Four bacterial strains from a representative community stabilized in glucose were isolated 100 
and identified taxonomically. The community was plated onto 0.5 % agarose Petri-dishes 101 
containing M9 supplemented with 0.2% glucose and were allowed to grow for 48 hours at 30 °C. 102 
Single colonies were then picked from these plates according to their colony morphologies, re-103 
streaked on fresh agarose plates and grown for another 48 hours at 30 °C. Single colonies from 104 
each isolate grown for 48 hours at 30 °C in liquid M9 supplemented with 0.2% glucose were 105 
finally stored at -80 °C in 40% glycerol.  Isolates were also identified according to their 106 
differential ability to ferment the following 16 carbohydrates: adonitol, arabinose, cellobiose, 107 
dextrose, dulcitol, fructose, inositol, lactose, mannitol, mannose, melibiose, raffinose, rhamnose, 108 
salicin, sucrose, and xylose (Fig S5 A-B). Fermentation ability was assessed using a phenol red 109 
broth base with an added carbohydrate at a final concentration of 1% w/v, except for cellobiose 110 
(0.25%) due to its low solubility. Each isolate was grown on an agarose plate, and a single 111 
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colony was picked and re-suspended into 100 µL 1x PBS. 2 µL of each isolate was inoculated 112 
into 50 µL of Phenol red broth + carbon source (in a 384 well-plate, Corning). 113 
Spectrophotometric measurements of phenol red (OD450 and OD551) were measured after 0, 114 
12, 16, and 19 hours of incubation. Clustering of O.D. profiles after 19 hours revealed four 115 
distinct phenotypic profiles, consistent with morphologies (Fig. S5C). Taxonomic assignments of 116 
isolates were verified using full-length 16S rRNA sequencing of DNA extracted from single 117 
colonies grown on agarose plates (GENEWIZ), using the online RDP classifier (51). 118 

 119 
 120 

Reconstitution of isolates from a representative community  121 
 122 
To test whether the dominant species isolated from the glucose stabilized communities are 123 

able to coexist, we constructed a four-strain community with four strains isolated from one 124 
representative community (C2R4). The four isolates belong to four different genera (Raoultella, 125 
Enterobacter, Pseudomonas, and Citrobacter) and were chosen because they are the most 126 
dominant species in the community and display distinctive morphologies, facilitating plate 127 
counting. To ensure that the starting densities were similar for all four isolates, single colonies 128 
were picked, resuspended into PBS 1x, and the optical densities were normalized to a OD620 of 129 
0.15. The initial inoculum was prepared by mixing the four isolates in 1:1:1:1 ratio. 4 µL of the 130 
initial inoculum was transferred to 500 µL fresh media M9 with 0.2% Glucose (3 replicate 131 
communities) and cultures were incubated at 30°C (Fig. S5D) . Every 48 hours, 4µL from each 132 
replicate community was transferred to 500µL of fresh growth media for a total of 7 transfers (14 133 
days). OD620nm measurements were conducted every 48 hours and the four isolates were 134 
enumerated by colony counts on M9+ 0.2% glucose agar plates on Transfer 5 (day 10) and 135 
Transfer 7 (day 14). We found that the four isolates were able to stably coexist after 7 transfers 136 
(14 days). Raoultella was the most abundant strain, followed by Enterobacter, and then 137 
Pseudomonas, and Citrobacter (see Fig S5E). 138 

 139 
 140 

Metabolic facilitation assay and measurement of glucose depletion 141 
 142 

To determine whether microbial cross-feeding is a potential mechanism that enables 143 
coexistence, four isolates from a single representative community were inoculated in 5 mL of 144 
M9 media with 0.2% glucose, then incubated for 48 hours at 30 °C (Fig. 3A). Cells were then 145 
separated from the spent media (SM) using the following procedure: cells were centrifuged at 146 
3000 rpm for 10 min, and SM was filter-sterilized and stored at 4 °C. Cells were re-suspended in 147 
the same volume of PBS, and washed two times times by centrifugation (3000rpm, 10min). Cells 148 
were diluted to an OD620 of 0.24 prior to inoculation. There was no detectable glucose 149 
remaining in any SM as measured using the Glucose GO Assay Kit (Sigma), with the exception 150 
of the SM from Pseudomonas, which was adequately controlled for (see main text). SM was then 151 
mixed 1:1 with fresh 2X M9 media with no carbon source. Each isolate was inoculated in each 152 
isolate’s SM-based M9 in triplicate at 1% v/v in a 384 well plate (Corning). The plate was 153 
incubated in a standard plate reader (Thermo 498 Scientific), and OD620 was measured every 10 154 
min at 30 °C. 155 

 156 
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We sought to determine whether glucose-stabilized communities were able to grow after 157 
glucose depletion, which would suggest that biomass accumulation is attributed to consumption 158 
of metabolic byproducts. For this, 95 glucose-stabilized communities were inoculated in a 96 159 
deep-well plate from frozen stock in 500 µL of M9+0.2% glucose. Two initial transfers with 48 160 
hours incubation were performed as previously described (30 °C no shaking). The third transfer 161 
was performed in duplicate and with a final volume of 600 µL. From these two plates, 100 µL 162 
samples were taken at 24, 36, 48 and 56 hours. OD620 was measured, followed by the 163 
measurement of glucose using the Glucose GO Assay Kit (Sigma). Glucose concentrations were 164 
inferred using linear regression from the standard curve, although no sample at any time showed 165 
detectable levels. 166 
 167 
Cell death measurements 168 
 169 

Samples were obtained at 12-hour intervals to measure the accumulation of biomass and 170 
determine the frequency of dead cells. Bacteria stained with the LIVE/DEAD BacLight Bacterial 171 
Viability Kit (L-7012, Invitrogen) following manufacturer instructions were spotted on 1% 172 
agarose pads. Microscopy was performed on an Eclipse Ti-E microscope (Nikon, Tokyo, Japan), 173 
equipped with Perfect Focus System (Nikon), a phase-contrast objective Plan Apochromat 174 
100X/1.40 NA (Nikon), and an ORCA-Flash4.0 V2 Digital CMOS camera (Hamamatsu 175 
Photonics, Hamamatsu City, Japan). Red fluorescence of dead cells was recorded with a Texas 176 
Red bandpass filter. Images were acquired with MetaMorph software (Molecular Devices, 177 
Sunnyvale, CA, USA) and analyzed with Microbe J (52). The images were processed with 178 
Adobe Photoshop (CC2015.5).  For Fig S14C, we counted between 235-2565 cells. 179 

 180 
Low abundant growth with no supplied carbon source 181 
 182 

Passaging experiments were performed using M9 synthetic media with no additional carbon 183 
sources, which resulted in the stabilization of very low abundancy microbial communities (Fig. 184 
S4).  Growth was often several orders of magnitude lower than growth on either the primary 185 
nutrient (Fig. S4C) or secreted byproducts (Fig. 3E-F), indicating that metabolic consumption of 186 
secreted byproducts is more likely to contribute to stabilizing competition than consumption of 187 
low levels of latent resources in the deionized water.  To determine community richness resulting 188 
from growth on the provided resource, we estimated the abundance of 16S amplicon reads 189 
deriving from contamination either by cross-well contamination or microbial growth on the low 190 
levels of total organic carbon in deionized water (Fig. S4A-B).  For each of the 12 initial points, 191 
communities were propagated for 84 generations with either with M9 and 0.2% glucose, or M9 192 
and no additional carbon source.  We plated communities on 0.5% agarose plates containing M9 193 
minimal media and 0.2% D-glucose to determine the colony forming units (CFU) per ml (Fig. 194 
S4C). CFU/ml was used as a proxy for total cell number in the community because of the strong 195 
correlation with cell counting using a hemocytometer (Fig. S4D).  The relative contribution of 196 
CFU for growth on water alone compared to growth on D-glucose was then used as a relative 197 
frequency cutoff for each of the 12 initial communities, respectively (Fig. S4E).   These values 198 
allowed us to estimate lower bounds for community diversity derived from the supplied the 199 
carbon source (Fig. S6B). 200 

 201 
 202 
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Measurement of community pH dynamics during a growth cycle 203 
 204 
To measure the fluctuations in pH during the 48 hour growth cycle, we thawed communities 205 
stabilized and cultured them for an additional 48 hours.  We chose a single representative 206 
community for each initial inoculum (12) and carbon source (3) used in the paper, resulting in a 207 
total of 36 communities. We inoculated these communities from frozen stock into M9+0.2% of 208 
the corresponding carbon source (glucose, citrate or leucine) for 48 hours at 30 °C.  For each 209 
sample, we took 4 µL and re-inoculated the sample into fresh media, and measured the pH after 210 
0, 12, 24, 36, and 48 hours of growth. pH was measured by spotting 4 µL of culture media onto 211 
indicator paper (Watman).  The pH of the fresh media was measured as a control. he results are 212 
shown in Fig. S17B. Media with glucose showed lowest pH of 6.5 at the end of 48 hours of 213 
growth. Media with citrate started at pH 6.0 but ended at pH 7.0. Media with leucine stayed 214 
stably at above pH 6.5 and finally at pH 7.0.  We performed similar experiments with isolates 215 
obtained from a representative community grown on M9+0.2% glucose (Fig S5), and found that 216 
monocultures acidify the media significantly more than the community (Fig S16A). 217 
  218 
 219 
Growth of stable consortia on different carbon sources to enrich for potential rare taxa 220 
 221 

To more fully characterize the community structure of our microcosms, we shifted 222 
communities stabilized on M9+0.2% citrate media to M9+0.2% glutamine media for an 223 
additional 42 generations.  We obtained eight communities passaged on M9+0.2%citrate for 84 224 
generations, and grew these communities on M9+0.2% glutamine for an additional 42 225 
generations transfers.  We sequenced these communities following the protocols described 226 
above, and obtained ~25,000 reads per sample. For communities grown on glutamine, we only 227 
observed 0-3 additional ESVs per sample. 228 
  229 
 230 
Statistical tests for Beta diversity differences 231 
 232 
The covariates explored in this study are the regional pool of species (initial environmental 233 
inocula) and the carbon source supplied in the media.  Between samples, we used Renkonen 234 
similarity at the family taxonomic level as a measure of beta diversity between communities, 235 
which is defined as:  236 

!(#, %) = 	1 −
1
2
,|#. − %.|
.

 237 

 238 
where #. and %. are the abundance of taxon / in sample 0 and sample 1 respectively.  We 239 
computed the family-level Renkonen similarities between all samples and grouped pairwise 240 
similarities if pairs were passaged on the same carbon source, or if pairs of samples originated 241 
from the same inocula.  We used the Renkonen similarity to determine if community similarity 242 
was higher between samples from the same time series or from different replicates as genus and 243 
family taxonomic rank (Fig S6C). We used the one-tailed Kolmogorov-Smirnov test (MATLAB 244 
function  kstest2.m) to determine if the pairwise similarities grouped by carbon source were on 245 
average higher than pairwise similarities grouped by initial inocula (see Fig S11C).   246 
 247 
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Test of temporal variation and replicate variation 248 
 249 
We estimated the variability in commmuntiy composition from different replicates from 250 
inoculum 2 (see Fig 1F) and compared this to the variability in community composition between 251 
the last three transfers in our passaging experiment. To calculate the variability across replicates, 252 
we computed the Renkonen Similarity between each pair of replicates after the last transfer 253 
(transfer 12). To calculate the temporal variation within a single replicate, we calculated the 254 
Renkonen Similarity within a replicate at transfers 10,11,12. We used only the final three 255 
transfers to ensure that the community composition has had enough transfers to stabilize and to 256 
ensure that the number of similarity scores used to assess the temporal variation was similar to 257 
the number similarity scores used to the assess the replicate variation (N = 24 within time-series, 258 
and N = 28 between time-series). We then assessed if replicate variations at the genus and family 259 
level were larger than the temporal variations at the same taxonomical resolution using a 260 
standard non-parametric test (in this case the Mann-Whitney U test). The statistical test showed 261 
that the replicate variation is significantly larger than the temporal variation at the genus level (P 262 
= 1.1 x 10-5) while at the family level this was not the case (P = 0.0624).   263 
 264 
 265 
 266 
Prediction of media carbon source from community structure 267 
 268 
To quantify the predictive capacity of community structure (both at the taxonomic and functional 269 
levels) for the supplied carbon source, we trained and evaluated multi-class support vector 270 
machine (SVM) models or random forest classifiers and measured the model accuracy.  SVMs 271 
were constructed by using the MATLAB function fitecoc and evaluated using 10-fold cross 272 
validation in Fig. 2C or leave one out cross-validation in Fig. S18.  Leave-one-out cross-273 
validation was performed by training the SVM on all samples except one, and predicting the 274 
carbon source from the sample left out of the training set.  Features used in the in the SVM were 275 
either the clr-transformed relative abundances at the family taxonomic level in Fig. 2C or the clr-276 
transformed inferred metagenome composition in Fig. S18.  To obtain a list of variable 277 
importance scores, we trained a random forest classifier using the same feature set using the 278 
TreeBagger function in MATLAB with 100 trees and default parameters (Fig S11B). 279 
 280 

Supplementary Text 281 
 282 
Microbial Consumer Resource Model 283 
 284 
The model presented in the paper is a modification of Robert MacArthur's consumer resource 285 
model (33, 37, 44), which models the per-capita growth of species as a function of resource 286 
consumption rate.  We begin by first re-stating the dynamics of individual species, followed by a 287 
modified form of resource dynamics that include environmental modification during bacterial 288 
growth. 289 
 290 
Let us denote the set of all possible resources by 23where 4 = 1, … ,6.  Furthermore, let us 291 
denote the set of all species by 7. where	/ = 1,… , 8. Each species is characterized by a resource 292 
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utilization matrix Cia, which represents the rate at which the species i uptakes resource a. 293 
Furthermore, there is a resource quality function 9:.3which captures the amount of biomass of 294 
species i produced per unit of resource a uptaken while maintaining energy balance (see below) .  295 
Assuming that for each species i there exists a minimum maintenance energy required for growth 296 
mi, the per capita growth rate of species i is: 297 
 298 
 299 

1
7.

;7.
;<

= ,9:.3=.323 −>.

3

 300 

 301 
 302 
This assumes populations die if they cannot achieve minimum growth rate to survive	>..  The 303 
principal modification to the MacArthur's consumer resource model is the addition of a 304 
stoichiometric matrix that encodes the proportion of consumed resources that are transformed 305 
into new resources and secreted back into the environment. A wide variety of bacterial 306 
heterotrophs are capable of excreting a large fraction of the carbon input through overflow 307 
metabolism even under aerobic conditions (26, 27). 308 
 309 
To model the bacterial secretion of metabolic byproducts, let the matrix Diba be a stoichiometric 310 
matrix that encodes the number of molecules of resource b secreted by to the environment 311 
species i per molecule of resource a it uptakes. Thus, the rate of production of resource b by 312 
species / is proportional to the sum over all resources of the  rate that a species takes up resource 313 
a times the stoichiometric parameter Diba 314 
 315 

,!?3
.

3,.	

=.3237. 316 

 317 
giving rise to the full dynamical equation for the abundance of resource @. 318 
 319 
 320 

;2?
;<

=
A? − 2?
B?

−	,=.?
.

2?7. +	,!?3
.

3,.	

=.3237. 321 

 322 
 323 
 324 
where A? is the initial resource abundance supplied in fresh media, and B?	is the replenishing 325 
(i.e. transfer) rate during batch culture passaging.  Note that we represent the efficiency of 326 
resource a with the parameter 9:.3 = :3 −	∑ !?3

.
? :?, which ensures that energy is balanced 327 

in our model. In slightly more detail, we denote the maximum ATP yield of resource α by wα. 328 
Recall when species i consumes resource α it make byproducts β according to the stoichiometric 329 
matrix Diαβ. To ensure energy balance, the maximum energy that can be extracted in such a 330 
process is the difference between the ATP yield of resource α and the total ATP yield of all the 331 
metabolic byproducts. Explicitly, this is just  given by 9:.3 = :3 −	∑ !?3

.
? :? . 332 

 333 
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The first term in the resource dynamics equation deliberately chooses the simplest (linear) supply 334 
rate of resource b. Alternative, more complex choices for this function are of course also 335 
possible, for instance one that would capture the periodic but pulsatile nature of resource 336 
addition in our experiments. Likewise, the constant maintenance rate mi is also the simplest 337 
possible functional choice for this parameter. These are the forms originally proposed by 338 
MacArthur and colleagues and are the most commonly used in the literature. Therefore, we 339 
adopted them for simplicity and to avoid the potential introduction of more complex ecological 340 
features, such as temporal niches. As shown in Fig. S21, the main general qualitative results 341 
reported in this paper (i.e. the coexistence of many taxa on a single supplied resource, and 342 
functional convergence in spite of taxonomic variability across similar habitats) do not change if 343 
we choose more complex supply and maintenance functions that reflect more closely our 344 
experiments 345 
 346 
 347 
Ensuring energy conservation 348 
 349 
For heterotrophic, aerobic bacteria, energy and carbon sources are often coupled within reduced 350 
organic substrates (19).  Following the laws of thermodynamics, the total energy (or free energy) 351 
available from resources supplied in the environment constrains the total energy secreted back 352 
into the environment.  However, energy (or free energy) is not well defined in our far from 353 
equilibrium dynamical equations. This quantity is indirectly associated with the resource quality, 354 
:, which is a phenomenological parameter that represents the relative gain in a limiting factor 355 
(e.g. carbon or energy) per consumed resource.  Our model assumes that the limiting factor is 356 
linear in the growth rate, which is expected if species are catabolically-limited, and :3	is the 357 
ATP yield for a resource	4.   358 
 359 
To ensure energy is not created during the metabolism of a resource, we ensure that the secretion 360 
matrix, !?3. 	is constrained by the following relation: 361 
 362 

,:?!?3
.

?

	< 		:3 363 

 364 
Sampling of consumer species according to functional groups  365 
 366 
To simulate the scenario where consumers are non-randomly distributed and taxonomically 367 
related, we sampled consumer coefficients from a prior distribution where ``families'' of 368 
consumers share similar consumption coefficients.  In this formulation, consumer coefficients 369 
are drawn from Dirichlet distributions, and the Dirichlet concentration parameter encodes the 370 
family-level consumption preferences and variability.  In our model, sampling from a Dirichlet 371 
distribution results in stochastically partitioning a fixed amount of cellular resources dedicated 372 
for nutrient uptake (e.g. transporters) into groups, and the concentration parameter fixes the 373 
average across these samples. 374 
 375 
The family-level consumption properties are represented by two parameters, F3,G  and ΩG where 376 
F3,Gis the concentration parameter for resource 4 belonging to family	I, and AG is the magnitude 377 
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of the all concentration parameters, such that: ∑ F3,G3 = ΩG. For family	I, we wish to construct a 378 
family of consumers with a tunable degree of preference for resource 4 = I. Thus we first 379 
sample F′3LG using the following relation: 380 
 381 

F′3LG~	Normal(T, UV), 382 
 383 
where Normal(µ,s2) denotes a Gaussian distribution of mean µ and standard deviation s. Note 384 
that in all simulations µ and s are chosen to be bounded between 0 and 1.  For other 385 
concentration parameters we first sample them from a uniform distribution, 386 
F′3WG	~	Uniform(0, 1). The concentration parameters are then normalized using the following 387 
formula: 388 
 389 

F3WG = (1 − F3LG)
F′3WG
∑ F′]]WG

 390 

 391 
Resulting in a set of concentration parameters F3,G . Note that the parameters T and U	control how 392 
much of a “specialist” a family of consumers will be.   For all simulations we choose T = 0.4 393 
and U = 0.01.  394 
 395 
We next used the family-specific parameters F3,G  and ΩG to compute dirichlet concentration 396 
parameters to sample uptake coefficients for individual consumers belonging to family I.   We 397 
first draw relative uptake rates for a “species” from a family of consumers using the following 398 
formula: 399 
 400 

_′.,`, _′.,V, … , _′.,a	~	Dirichlet(ΩGF`, ΩGFV, … ,ΩGFa) 401 
 402 
where ΩG controls the total variability with each family.  A high ΩG	ensures that ``species'' are 403 
very similar, where a low ΩG results in ``species'' that are variable.  For our simulations, we 404 
chose ΩG = 	100 for all families.   405 
 406 
Each sample from a Dirichlet results in a set of consumption coefficients that sum to unity, such 407 
that:  ∑ _′.3 = 13L`,..,a .  If we used these values directly as uptake coefficients, then we may 408 
obtain cases where coexistence is unbounded, recently investigated in detail using similar 409 
consumer resource models (39, 45), which arises from a linear constraint on the sum of uptake 410 
coefficients.  We thus drew a new random value,  g.~	Normal(1,0.01),	for each “species” / that 411 
relaxed this constraint.  Consumer coefficients were then computed using the following function: 412 
 413 

_.3 = g._′.3 414 
 415 
 416 
Numerical Simulations 417 
 418 
Choosing Parameters 419 
 420 
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For all simulations, we set the number of species to be 7 = 100 and the number of resources to 421 
be 6 = 10. The resource qualities, the resource replenishment rates, the maintenance and the 422 
growth rate multipliers were set to unity, such that: :.3 = B3 = >. = h. = 1	for all species / and 423 
resources 4.  We initialized simulations to model dynamics on a single externally supplied 424 
resource i by setting A3 = 10j	if 4 = i and 0 otherwise.  For all simulations, we assumed that 425 
the stoichiometric matrix is species-independent, such that !?3. = !?3.  Stoichiometric matrices 426 
were drawn from a uniform distribution, such that: 427 
 428 

!?3~	uniform(0, 1 6⁄ ) 429 
 430 
 431 
Note that by setting the upper bound of !?3 ≤ 1/6	 and :.3 = 1, we ensure that energetic 432 
constraints are not violated.   433 
 434 
Time-courses 435 
 436 
In Fig 4, consumer matrices were drawn from Dirichlet distributions (see previous section), 437 
while in Fig. S19, consumer matrices were drawn from uniform distributions. Simulations were 438 
performed in MATLAB 2015a using ODE solver ode15s.  Simulations were performed for at-439 
least 10o	timesteps, where the vast majority of simulations resulting in reaching stable equilibria 440 
in roughly 500 timesteps.  Code is available on the following GitHub repository:  441 
https://github.com/jgoldford/mcrm. 442 
 443 
 444 
 Metagenomic analysis and comparison with experiment 445 
 446 
Based on our experimental results, we expected that the collection of genes in the community 447 
(the metagenome) would be associated with the externally-supplied resource (e.g., glucose, 448 
citrate, or leucine).  To compare to the model, we implicitly assume that the metagenome is 449 
associated with the community-wide uptake capability of externally supplied resources.  This 450 
assumption requires that gene dosage is positively associated with the activity of transporters 451 
(46). 452 
 453 
From experimental data, we estimated the metagenome from 16S rRNA amplicon sequencing 454 
data using PICRUSt (40).  The gene abundance profiles were normalized to sum to unity, and 455 
were transformed using the centered log-ratio transform (47).   Formally, for a composition #, we 456 
define the the centered log-ratio transform (clr) as: 457 
 458 

_pq(#) = 	r = sln t
#`
u(#)

v ,…	, ln t
#w
u(#)

vx 459 

where u(#) = 	 y∏ #..
{  1, where D represents the length of composition vector x.  We then 460 

construct a matrix, |, where r.}  represents the clr-transformed abundances for gene / in sample 461 

                                                
1 For all metagenome samples, a small value, ~	 = 	10�VÄ was added to each #. to prevent 
u(#)from becoming zero. 
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Å.  We then used tSNE (t-distributed Stochastic Neighbor Embedding) to reduce the 462 
dimensionality of the clr-transfomed metagenome matrix | as seen in Figure 2c and in the main 463 
text.  In Fig. S19, the fraction of the metagenome that is dedicated to Leucine degradation 464 
(KEGG Module M00036) was computed for each sample, then grouped by the externally-465 
supplied resource x-axis), revealing a strong concordance between the presence of a specific 466 
limiting nutrient and the community-wide metabolism for that limiting nutrient. 467 
 468 
To compare experiments to the model, we first simulated the population dynamics and found the 469 
steady state abundance for each species /, 7.∗. We then computed the total uptake of resource a 470 
(which we denote as Ya) as: 471 
 472 

13 = 	,=.37.
∗

.

 473 

 474 
For each simulation Å on a resource i, we constructed a matrix of community wide uptake rates 475 
with matrix elements equal to 1}]. The total uptake capacity per simulation was normalized to 476 
sum to unity, and was transformed using the clr transform, just like in the case with inferred 477 
metagenomic data.  Dimensionality reduction was then performed on this matrix using tSNE, 478 
and plotted in the Figure S19.  479 
 480 
 481 
Monod model 482 
 483 
Microbes in a community can coexist in an environment with a single limiting resource if strains 484 
have a peak fitness at some intermediate concentration of the limiting resource (21).  We 485 
investigated whether this mechanism may be responsible for coexistence by isolating the 486 
dominant taxa from a representative community, and measuring the growth rates at various 487 
concentrations to estimate parameters used in a Monod growth model.  First, isolates were 488 
obtained via plating, then grown in minimal M9 salts media supplemented with glucose at 489 
concentrations ranging from 0.01 - 0.2 %.  For each strain / on glucose concentration 8, we fit a 490 
curve to the following logistic equation: 491 
  492 

1
7.

;7.
;<

= 	 q.(8) t1 −
7.

A.(8)
v 493 

 494 
 495 
where q.(8) is the maximum per capita growth rate, and A.(8) is the carrying capacity of strain / 496 
on a carbon source with abundance 8.  Monod parameters for each species T. and É. were then 497 
fitted using the following function: 498 
 499 

q.(8|T., É.) =
T.8
É. + 8

 500 

 501 
These parameters where then used in the following dynamic growth and substrate equations: 502 
 503 
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 504 
1
7.

;7.
;<

= 	
T.8
É. + 8

− >.	505 

;8
;<

= 	
4Ñ − 8
B

−,
7.
1.

T.8
É. + 8.

 506 

  507 
 508 
where 1. is the yield coefficient for growth on glucose, 4Ñ = 0.2	% is the supply added every 509 
time step B = 48 hours.  We set 1. = 42	 (in units of O.D. per percent glucose) for each species 510 
2. We also assume that the maintenance energy is 7.6 mmol ATP per gram cell dry weight 511 
(gCDW) per hour which corresponds to a growth rate of approximately 0.02 hour-1 3.  512 
Simulations were performed in MATLAB 2015a, using the ode45 solver, and all fitting to 513 
experimental data was done using the fit.m function in MATLAB. Fitted Monod curves are 514 
plotted in Fig. S16A, and the outcome of a representative simulation are plotted in Fig. S16B.  515 
Note that in Fig. S16B, initial conditions were chosen to match experimental relative abundances 516 
after the passaging experiment (generation 84). In all simulations, Raoultella outcompeted all 517 
other strains leading to competitive exclusion.  518 
  519 
 520 
 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 
                                                
2 A yield coefficient of 0.5 g/ g glucose was used for each species (BNID 105318).  Assuming 
that gCDW/cell is roughly 150 fg (BNID: 103894), and 1 O.D. per mL is 8	 × 10à cells (BNID: 

100985), then Ä.â	äãåç
`	ä	äéèêëíì

×
Ä.Ä`	

î	îïñóòôö
õú

%	äéèêëíì
	×

`	êìéé

`âÄ	×`Äùûü	äãåç
	×

`	†.å.

à	×`Ä°	
óöïïô
õú

= 42	
†.å.

%	äéèêëíì
 

 
3 The value of maintenance energy was estimated used Escherichia coli measurements on 
glucose minimal media during exponential growth (BNID:111285).  This value was converted 
into the estimated minimum per capita growth rate per hour using the following dimensional 
analysis: ¢.j	×`Ä

ù£	§ëéì	•¶ß

`	äãåç×®
×

`	§ëéì	äéèêëíì

©j	§ëéì	•¶ß
	×

`	%	äéèêëíì

Ä.Ä`	ä	äéèêëíì.
	×

Ä.ÄÄÄÄ`V	äãåç

`	†.å.™´´	¨≠
	×

oV	†.å.™´´	¨≠
%	äéèêëíì

=

0.0181	h�`  
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Supplementary Figures 529 

 530 
 531 
Fig S1: Characterization and diversity of microbiomes isolated from plant and soil samples. (A) 532 
16S sequencing results for 11/12 initial inocula (labeled 1-10, 12 on the x-axis).  Stacked bar-533 
plots show the community composition at the Order taxonomic level. B) Rarefaction curves for 534 
each inoculum community; the average of 100 random samples of a fixed sampling size (x-axis) 535 
was plotted against the number of unique exact sequence variants (ESV) (y-axis).  The number of 536 
unique 16S sequences spanned an order of magnitude, ranging from 110-1290 exact sequence 537 
variants. Note that we were unable to generate amplicon libraries for inoculum 11. 538 
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 559 
 560 
Fig S2: Dynamics of ex-situ community composition over 84 generations in glucose-561 
supplemented media. Communities were transferred into fresh media every 48 hours, allowing 562 
approximately seven growth generations per transfer.  After each transfer, we determined the 563 
community composition using 16S rRNA amplicon sequencing (see methods).  The relative 564 
abundance of each taxon was plotted as a function of time (generations).  All inocula appear to 565 
reach stable community structures by the 60th generation. 566 
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 571 

Fig S3: Presence of sparse rare taxa in ex situ assembled microbial communities.  (A) 572 
Rarefaction curves were produced by subsampling a fixed number of reads and computing the 573 
number of unique exact sequence variants (ESVs).  The plot shows the average over 100 samples 574 
at each fixed sampling depth (x-axis) for each of the 12 inocula. (B) For each stabilized 575 
community, we aimed to estimate the presence of sparse rare taxa on our stabilized communities 576 
by measuring the number of additional ESVs detected at sampling depths above 10,000 reads.  577 
We plotted the number additional reads above 10,000 (x-axis) vs the number of additional ESVs 578 
detected at sampling depths above 10,000 reds (y-axis).  Although there appears to be a positive 579 
correlation between additional sampling depth and additional reads, at-most 2 additional ESVs 580 
were detected at sampling depths of ~60,000 reads.  (C) To further quantify the presence of rare 581 
taxa in our samples, we took eight communities stabilized on M9+citrate and passaged them on 582 
M9+glutamine for an additional 7 transfers, and sequenced at an average depth of 25,000 reads.   583 
The number of ESVs detected in the communities passaged on M9+citrate is plotted as blue bars, 584 
and the additional ESVs detected in the communities passaged on M9+glutamine are plotted as 585 
orange bars, where between 0-3 additional ESVs were detected when passaged on glutamine. 586 
 587 
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 588 
Fig S4: Low levels of bacterial growth with no externally supplied carbon source. (a) We 589 
repeated passaging experiments without an externally supplied carbon source, and observed that 590 
widespread and diverse communities survive over the course of 84 generations.  Communities 591 
were similar in structure to glucose supplemented communities (b), but with higher diversity.  c) 592 
To determine the richness of communities surviving primarily on the externally supplied 593 
resource, we plated the communities after 84 generations and counted colony forming units 594 
(CFU).  We plotted the CFU/mL in replicates of four for each inoculum passaged either on M9 595 
with 0.2% glucose (blue) or on M9 with no supplemented carbon source (yellow).  In all cases, 596 
populations sizes were orders of magnitude lower when no carbon source was provided 597 
compared to population sizes of communities grown on glucose. d) hemocytometer cell counting 598 
was performed to verify that CFU accurately recapitulated cell densities.  For 12 samples, 599 
hemocytometer counting was performed and compared to CFU counts, exhibiting strong positive 600 
correlation (Pearson's correlation, Æ = 0.98). e) Measurements of absolute population sizes 601 
allowed us to define relative abundance cutoffs for communities grown on glucose, ensuring that 602 
growth of taxa above the relative abundance cutoff was primarily a consequence of the externally 603 
supplied glucose. 604 
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 615 
Fig S5: Four strains from a representative community coexist in reconstituted communities. 12 616 
isolates were picked from a representative community from inoculum 2 with 4 distinct 617 
morphologies. (A-B) Isolates were grown in phenol red broth with the addition of one of 16 618 
carbon sources.  Optical density (OD) was measured at 450 nm and 551 nm after 19 hours to 619 
track the degree of acidification from fermentation.  (C) The O.D. profiles were hierarchically 620 
clustered, revealing 4 clusters of isolates with distinct fermentation profiles, corroborating 621 
morphology and sequencing results. These results indicate that the 12 isolates belong to one of 622 
four taxa, (D) To see if these four taxa could coexist without the presence of other community 623 
members, we inoculated M9+0.2 glucose with equal proportions of each taxa, passaged them for 624 
seven dilution cycles and plated the final populations.  We counted the colony forming units 625 
(CFUs) and distinguished each taxon based on morphology.  (E) The relative abundance of three 626 
replicates at transfers show that all four taxa coexist after seven transfers. 627 
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 634 
 635 
Fig S6: The community structure from the same inocula can be highly variable and the genus 636 
level, but similar at the family level. Passaging experiments of microbial communities on M9 + 637 
0.2 % glucose were repeated with up to 8 replicates per inoculum.  (A) Each subplot is the 638 
relative abundance of the exact sequence variants (ESVs) for all replicates originating from the 639 
same inoculum. Note that for each inoculum, fixed points range from multiple (e.g. inoculum 2) 640 
to a single attractor (e.g. inoculum 6).  (B) The distribution of richness (see Fig. S4) estimates 641 
across all communities formed in (A) showed that all large-scale competitive experiments 642 
retained at-least 2 sequence variants, and the majority (48/92) retained more than four sequence 643 
variants. (C) .  To characterize the variability of community structure across different starting 644 
replicates at various levels of taxonomic resolution, we computed the Renkonen similarity (at 645 
both genus and family-levels) between replicate communities from inocula 2 after 12 transfers.  646 
As a comparison, we computed the Renkonen similarity between samples obtained at the end of 647 
the last three transfers (transfer 10-12) within the same replicate.  The boxplots are distributions 648 
of Renkonen similarities between both within replicates (blue) and between replicates (red) at the 649 
genus (left) and family (right) taxonomic levels. Communities are significantly less similar at the 650 
genus level when comparing between replicates vs. within replicates (Mann-Whitney U-test: P < 651 
10-4), while communities are of comparable similarity at the family level when comparing 652 
samples from different replicates vs. samples from the same replicate (Mann-Whitney U-test: P 653 
= 0.06). 654 
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 663 
Fig S7: Inoculum 6 exhibits strongly deterministic population dynamics. We performed replicate 664 
passaging experiments starting with inoculum 6 and found nearly reproducible population 665 
dynamics.  Each subplot shows the relative abundance of sequence variants (y-axis) during the 666 
course of the passaging experiment (x-axis).  Notably, in 7/8 replicates, a bloom of a Pantoea 667 
sequence variant occurred at the 42nd generation. 668 
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 680 
 681 
Fig S8: Bottlenecks imposed by dilutions are unlikely to induce extinctions. We calculate the 682 
probability of extinction by stochastic sampling as a function of the size of the population for a 683 
given species, for the dilution factor we apply in our experiments (D=0.008; purple line) as well 684 
as for 10-fold larger (red) and 10-fold smaller (green) dilution factors. We note that all of the 685 
ESVs that we detect in our community 16S sequencing have population sizes of at least 10,000. 686 
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 714 
 715 
 716 
Fig S9: Community structure at ESV and family level on citrate. Passaging experiments of 717 
microbial communities on M9 + 0.07 C-mole/L citrate were performed with up to 8 replicates 718 
per inoculum, as in the case with glucose. 719 
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 736 
Fig S10: Community structure at ESV and family level on leucine. Passaging experiments of 737 
microbial communities on M9 + 0.07 C-mole/L leucine were performed with up to 8 replicates 738 
per inoculum. 739 
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 758 
 759 
Fig S11: Family-level composition is a strong taxonomic predictor of the externally-supplied 760 
carbon source.  761 
 762 
(A) The family-level community composition was log-transformed and dimensionally reduced 763 
using principal component analysis.  Like in Fig 3A, family-level community structure was 764 
strongly associated with the carbon source in the media. A biplot was used to show which taxa 765 
were correlated with the first two principal components. (B) A random forest classifier was 766 
trained to predict carbon source from the family-level community structure, and out-of-bag 767 
feature importance scores are reported, confirming that the abundance of Enterobacteriaceae and 768 
Pseudomonadaceae are important predictors of carbon source. (C) The distributions of Renkonen 769 
similarities between family-level compositions between samples either grown on the same 770 
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carbon source (light blue, N=12558) or between samples from the same inocula (grey N=3056) 771 
are plotted, revealing that the communities grown on the same carbon source are more similar 772 
than communities grown from the same inocula (one-tailed Kolmogorov-Smirnov test; P < 10-5). 773 
(D) A support vector machine (SVM) classifier was used to train a model to predict the carbon 774 
source (glucose, citrate or leucine) from the clr-transformed community structure at the ESV or 775 
family level.  Models were trained using different coarse-graining descriptions of community 776 
structure based on taxonomy (x-axis) and the 10-fold cross-validation accuracy (repeated 10 777 
times) for each model is reported on the y-axis. (E) An SVM was retrained using families above 778 
a pre-defined threshold (x-axis), and the misclassification rate (1-accuracy) is reported on the y-779 
axis, revealing that low-abundant families aid in model performance. (F) Metagenome 780 
compositions were imputed using PICRUSt (40) and embedded in a two-dimensional space 781 
using t-distributed stochastic neighbor embedding (tSNE). (G) The summed abundance of genes 782 
belonging to the leucine degradation KEGG module (M00036) are plotted for all samples using a 783 
boxplot, where samples are grouped by the limiting carbon source (x-axis).  Leucine degradation 784 
genes are enriched in communities grown on leucine relative to communities grown on citrate 785 
(Mann Whitney U-test: P < 10-14) or glucose (Mann Whitney U-test: P < 10-24). 786 
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 804 

 805 
Fig S12: Isolates grown on each other's metabolic byproducts. Isolates were grown for 48 hours 806 
and the spent media (SM) was used to synthesize a new growth media (see Methods).  Each 807 
subplot is the growth curve of one of four strains (vertical axis) on media synthesized from 808 
byproducts secreted during monoculture growth of the strain on the horizontal axis. Plots show 809 
the average growth across 3 replicates, and shaded regions denote the 95% confidence interval. 810 
Note that Pseudomonas spent media contained at a residual abundance of glucose (0.03%). Light 811 
grey lines show growth on M9+0.03% glucose, which is less than the growth on Pseudomonas 812 
spent media. This indicates that the growth on the spent media from Pseudomonas is not solely 813 
explained by the availability of residual glucose. 814 
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 820 
 821 
Fig S13: Carrying capacities on secreted byproducts are comparable to growth on glucose. 822 
Logistic growth curves were fitted to each growth curve measured in Fig. S12 and the 823 
distribution of carrying capacities for each isolate (grouped box-plots) grown on glucose or 824 
indicated isolate's spent media is plotted in each subplot. 825 
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 847 
Fig S14: Cell death and lysis are not likely the major source of secreted resources. We used a 848 
live/dead cell assay (see methods) to estimate the number of dead cells in two replicate 849 
communities (replicate 2 and 4) and monocultures of isolates obtained from replicate 4 from 850 
inoculum 2 after 12, 24, 36 and 48 hours of growth on minimal media with glucose. (A) Images 851 
show representative dead cells (red fluorescence) for all samples.  White triangles appear next to 852 
cells that have not lysed, while black triangles appear next to cells that have lysed (lysis is shown 853 
in adjacent insets).  (B) An example of lysed cell (black triangle) and non-lysed cell (white 854 
triangle). (C) The fraction of cells that stained red is on the y-axis, which is a proxy for cell 855 
death.  Error estimates were generated by using the measured binomial sampling variance. It is 856 
worth noting that in Fig. 3F in the main text, the average increase in biomass is approximately 5-857 
fold greater than the proportion of estimated dead cells, suggesting that consumption of dead 858 
cellular material is not sufficient to explain results presented in Fig. 3F. 859 
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 876 
Fig S15: Repeating the experiment with vigorous shaking does not result in massive loss of 877 
coexistence. Spatial structure in our 96-well plate format could also allow for coexistence of 878 
microbial species (33).  Thus, experiments were repeated for three separate inocula passaged on 879 
media with M9+0.2% glucose, but while vigorously shaking cultures at 200 RPM.  In all cases, 880 
no single strain outcompeted all other strains, suggesting that coexistence is stable even without 881 
potential spatial heterogeneity. 882 
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 903 
 904 
Fig S16: Effect of resource abundance on the growth rates of individual species. A potential 905 
mechanism for coexistence among microbes in an environment with a single limiting nutrient is 906 
each species has maximal fitness at least one intermediate level of the limiting nutrient (21). 907 
Thus, isolates from a representative community were grown at various concentrations of glucose 908 
(subplot (A), x-axis), and the initial growth rate was measured (See Monod model section in the 909 
Supporting Information), and fitted to a Monod growth model. Raoultella displayed unusually 910 
high growth rates at low glucose concentrations.  In (A), we removed this outlier (grey dot) at 911 
very low resource abundances.  We used the Monod parameters to simulate a batch culture 912 
passaging experiment (B), and found that Raoultella competitively excludes all other species in 913 
silico. If the outlier observed at low growth rates is retained, Raoultella still competitively 914 
excludes all other species.  Together, these results indicate that there is no supporting evidence of 915 
resource abundance-dependent fitness effects that lead to coexistence amongst these strains. 916 
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 939 
Fig S17: Communities buffer pH fluctuations during growth: (A) pH was measured after the 48 940 
hour growth cycle in a representative community (grey bar), and compared to the pH of the 941 
media after growth of individual isolates (colored bars).  Monocultures lowered the pH more 942 
than the community.  (B) To determine whether communities buffered pH fluctuations 943 
generically, we thawed stable communities from each inocula passaged on either glucose, citrate 944 
and leucine, and passaged them for one additional growth cycle and measured the pH at 12 hour 945 
intervals (colored lines).  Interestingly, pH dropped initially for communities grown on glucose 946 
or leucine, but increased during the the last phase of growth.  Only for communities grown on 947 
citrate did the pH change by ~ 1 pH unit, suggesting that there are not major pH fluctuations 948 
during the growth of these microbial communities. 949 
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 953 
Fig S18:  Generation of “families” of consumers in consumer resource models.  (A)  A flow 954 
diagram describing the processes of generating families of consumers in consumer resource 955 
models.  (1) First we define a set of parameters for a Dirichlet distribution specifying the 956 
proportion the consumer’s total uptake rate taken by each resource (FØìíëèØêì), where we each 957 
family has a preferred resource (red).  (2) We then sample uptake proportions for each resource 958 
4, _3∞  from the Dirichlet distribution, and multiply these values with a species dependent total 959 
uptake capacity (Step 3, T) to obtain the consumption rate of resource 4 for each consumer.  (B)  960 
A stacked bar plot showing the uptake coefficients (consumption rates,	_.3) for each sampled 961 
consumer and resource.  Although each species has different uptake rates for each resource, each 962 
consumer has a high uptake coefficient for resource A. 963 
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 980 
Fig S19: Functional clustering is observed in both consumer resource models and experiments.  981 
(A) Simulations of the microbial consumer resource model (see SI text) was performed by 982 
randomly sampling consumer and stoichiometric matrices from uniform distributions, then 983 
supplying one of three resources in the environment (denoted as A, B and C here), and the 984 
communities’ capacity to consume each resource was computed (Supplemental information). t-985 
distributed stochastic neighbor embedding (tSNE) was used to reduce dimensionality of the 986 
resource uptake vectors and plotted in 2-D, which revealed clustering of uptake capacity based 987 
on the identity of the resource in the environment. (B) The distribution of community-wide 988 
uptake capacity for resource C when grown on three different resources (x-axis).  Note that even 989 
in the presence of stabilizing mechanisms like cross-feeding, the dominant signal is the capacity 990 
to uptake the primary nutrient.  (C) predictions from the model are compared to experiment, 991 
where we performed dimensionality reduction on inferred metagenomes.  We then computed the 992 
relative abundance of genes used for leucine degradation (D), showing that communities grown 993 
in leucine are enriched genes involved in leucine degradation relative to communities grown in 994 
citrate (Mann Whitney U-test: P < 10-14) or glucose (Mann Whitney U-test: P < 10-24).  Note that 995 
in (A) and (C), SVMs were trained to predict the carbon source from either the community-wide 996 
uptake rates (in A) or the metagenome (in C), and the leave-one out cross-validation accuracy is 997 
reported in the lower right corner. 998 
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 1003 
 1004 
Fig S20: Microbial consumer resource model can recapitulate key experimental findings: (A) 1005 
Numerical simulations of the microbial consumer resource model (MCRM) often display 1006 
trajectories of species that grow to large densities before going extinct at steady state (red line), 1007 
similar to experimental results found in Fig. S7.  (B) We performed simulations modeling the 1008 
experiment performed in Fig. 3, where individual consumers produced byproducts that were used 1009 
as substrates for the growth of other strains.  For this simulation, a stable community was 1010 
obtained using random sampling of consumer and secretion rates resulting in a 5 “species” 1011 
community.  For each “species”, we simulated batch culture growth by not resupplying 1012 
resources, and obtaining the secreted byproducts after 48 time steps.  We used these byproducts 1013 
as the input resources for simulations of batch culture for each isolate.  The fold change in 1014 
population size for each consumer (x-axis) growth on the byproducts of each consumer (y-axis) 1015 
is presented as a heat-map.  Notice that all values are above 0, indicating that each “species” 1016 
grew on the byproducts of others. 1017 
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 1035 
Fig S21:  Major qualitative features of the model are unaffected by an oscillating resource 1036 
supply.  To determine whether the qualitative features of the MCRM are affected by the 1037 
functional form of the resource supply term, we simulated growth dynamics in batch culture with 1038 
dilutions after each growth cycle (48 time steps).  We rescaled both the uptake coefficients and 1039 
secretion parameters to ensure resources were not immediately consumed during the growth 1040 
cycle (see SI text).  All other parameters were the same as those presented in Figure 4 of the 1041 
main text.  Like the simulations presented in the main text using continuous resource dynamics, 1042 
simulations with non-continuous resource dynamics resulted in (A) species variability, (B) 1043 
family-level convergence, (C) coexistence and (D) functional convergence just as in the 1044 
chemostat simulations presented in main text.  1045 
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